Laser cutting of metals has become the reference manufacturing technology in sheet metal working thanks to the flexibility and the increased productivity it offers when compared with other competitive technologies. Considering, in particular, the fusion-cutting mode, i.e., when nitrogen is used as an assisting gas, different aspects contribute to the process quality among which dross attachment plays the most important role. To cope with the related time-dependent deterioration of the process quality and to obtain an online adaptation of the process parameters for different working conditions, a closed-loop dross regulation system is needed. To realize it, a reliable, continuous, and accurate estimation of the dross is mandatory. This work focuses on this challenging problem, presenting and comparing different approaches to estimate the dross attachment based on the process emission collected by a coaxial camera. Specifically, a method which relies on the accurate analysis of the process emissions for determining an effective classification method is compared with a deep-learning approach based on convolutional neural networks. The obtained results, validated in real experimental conditions, confirm the possibility to accurately estimate the presence of significant dross attachment in real-time and open the way to the design of a closed-loop control algorithm for the real-time regulation of the dross attachment formation and consequently of the process quality.

1.
D.
Belforte
, “
2018 was another record year, contending with turmoil
,”
Ind. Laser Solutions
34
,
9
12
(
2019
).
2.
C. L.
Caristan
,
Laser Cutting Guide for Manufacturing
(
Society of Manufacturing Engineers
,
Dearborn, MI
,
2004
).
3.
W. M.
Steen
and
J.
Mazumder
,
Laser Material Processing
, 4th ed. (
Springer
,
London
,
2010
).
4.
J.
Pocorni
,
A. F. H.
Kaplan
,
D.
Petring
, and
J.
Powell
,
LIA Guide to High Power Laser Cutting
(
Laser Institute of America
,
Orlando, FL
,
2017
).
5.
See https://www.blmgroup.com for more information about BLM GROUP (last accessed February 8, 2020).
6.
See https://www.trumpf.com for more information about TRUMPF GmbH (last accessed February 8, 2020).
7.
M.
Pacher
,
L.
Monguzzi
,
L.
Bortolotti
,
M.
Sbetti
, and
B.
Previtali
, “Quantitative identification of laser cutting quality relying on visual information,” in LiM 2017 Proceedings (
German Scientific Laser Society
,
Munich
,
2017
), pp. 1–11.
8.
C.
Goppold
,
T.
Pinder
, and
P.
Herwig
, “
Transient beam oscillation with a highly dynamic scanner for laser beam fusion cutting
,”
Adv. Opt. Technol.
5
,
61
70
(
2016
).
9.
F. O. H.
Jorgensen
, “
Process monitoring during CO2 laser cutting
,”
SPIE Proc.
1412
,
198
208
(
1991
).
10.
P.
Sforza
and
V.
Santacesaria
, “
CO2 laser cutting: Analytical dependence of the roughness of the cut edge on the experimental parameters and process monitoring
,”
SPIE Proc.
2207
,
836
847
(
1994
).
11.
P.
Sforza
,
M.
Dell’Erba
,
V.
Santacesaria
,
D.
de Blasiis
, and
V.
Lombardo
, “
A three-modules sensor for CO2 laser welding and cutting processes
,”
SPIE Proc.
3097
,
97
107
(
1997
).
12.
I.
Decker
,
H.
Heyn
,
D.
Martinen
, and
H.
Wohlfahrt
, “
Process monitoring in laser beam cutting on its way to industrial application
,”
SPIE Proc.
3097
,
29
37
(
1997
).
13.
H.
Kaebernick
,
A.
Jeromin
, and
P.
Mathew
, “
Adaptive control for laser cutting using striation frequency analysis
,”
CIRP Ann. Manuf. Technol.
47
,
137
140
(
1998
).
14.
J.
De Keuster
,
J. R.
Duflou
, and
J. P.
Kruth
, “
Monitoring of high-power CO2 laser cutting by means of an acoustic microphone and photodiodes
,”
Int. J. Adv. Manuf. Technol.
35
,
115
126
(
2006
).
15.
J.
De Keuster
,
J. R.
Duflou
, and
J. P.
Kruth
, “Real-time adaptive control and optimisation of high-power CO2 laser cutting using photodiodes,” in Proceedings of the 5th Lane Conference (
Elsevier
,
Erlangen
,
2007
), p. 14.
16.
D.
You
,
X.
Gao
, and
S.
Katayama
, “
Review of laser welding monitoring
,”
Sci. Technol. Weld. Joining
19
,
181
201
(
2014
).
17.
T.
Purtonen
,
A.
Kalliosaari
, and
A.
Salminen
, “Monitoring and adaptive control of laser processes,” in Proceedings of the 4th Lane Conference (
Elsevier
,
Furth
,
2014
), Vol. 56, pp. 1218–1231.
18.
N.
Levichev
,
G.
Costa Rodrigues
,
R.
Dewil
, and
J. R.
Duflou
, “
Anticipating heat accumulation in laser oxygen cutting of thick metal plates
,”
J. Laser Appl.
32
,
022018
(
2020
).
19.
B.
Adelmann
,
B.
Neumeier
,
M.
Schleier
,
E.
Wilmann
, and
R.
Hellmann
, “Optical cutting tear detection system for industrial fiber laser based cutting machines,” in LiM 2015 Proceedings (
German Scientific Laser Society
,
Monaco di Baviera
,
2015
).
20.
B.
Adelmann
,
M.
Schleier
,
B.
Neumeier
,
E.
Wilmann
, and
R.
Hellmann
, “
Optical cutting interruption sensor for fiber lasers
,”
Appl. Sci.
5
,
544
554
(
2015
).
21.
B.
Adelmann
,
M.
Schleier
,
B.
Neumeier
, and
R.
Hellmann
, “
Photodiode-based cutting interruption sensor for near-infrared lasers
,”
Appl. Opt.
55
,
1772
1778
(
2016
).
22.
M.
Schleier
,
B.
Adelmann
,
C.
Esen
, and
R.
Hellmann
, “
Cross-correlation-based algorithm for monitoring laser cutting with high-power fiber lasers
,”
IEEE Sens. J.
18
,
1585
1590
(
2018
).
23.
M.
Schleier
,
B.
Adelmann
,
B.
Neumeier
, and
R.
Hellmann
, “
Burr formation detector for fiber laser cutting based on a photodiode sensor system
,”
Opt. Laser Technol.
96
,
13
17
(
2017
).
24.
M. Y.
Huang
and
C. R.
Chatwin
, “
A knowledge-based adaptive-control environment for an industrial laser cutting system
,”
Opt. Lasers Eng.
21
,
273
295
(
1994
).
25.
C.
Alippi
,
V.
Bono
,
V.
Piuri
, and
F.
Scotti
, “Toward real-time quality analysis measurement of metal laser cutting,” in VIMS 2002: IEEE International Symposium on Virtual And Intelligent Measurement Systems (
IEEE
,
Girdwood
,
2002
), pp. 39–44.
26.
P.
Wen
,
Y.
Zhang
, and
W.
Chen
, “
Quality detection and control during laser cutting progress with coaxial visual monitoring
,”
J. Laser Appl.
24
,
032006
(
2012
).
27.
Z.
Hu
and
X.
Yuan
, “
A machine vision detection algorithm for laser-cutting spark jet angle
,”
J. Intell. Fuzzy Syst.
37
,
4595
4603
(
2019
).
28.
H.
Haferkamp
,
M.
Goede
, and
A.
von Busse
, “
Quality monitoring and assurance for laser beam cutting using a thermographic process control
,”
SPIE Proc.
3824
,
383
391
(
1999
).
29.
R.
Poprawe
, “
Modeling, monitoring and control in high quality laser cutting
,”
CIRP Ann. Manuf. Technol.
50
,
12
15
(
2001
).
30.
J. R.
Duflou
,
E. F.
Sichani
,
J. D.
Keuster
, and
J.-P.
Kruth
, “Development of a real time monitoring and adaptive control system for laser flame cutting,” in International Congress of Applications of Lasers & Electro-Optics (
Laser Institute of America
,
Orlando
,
2009
), Vol. 2009, pp. 527–536.
31.
E. F.
Sichani
,
J.
De Keuster
,
J. P.
Kruth
, and
J. R.
Duflou
, “Monitoring and adaptive control of CO2 laser flame cutting,” in Physics Procedia Laser Assisted Net Shape Engineering 6, Proceedings LANE 2010 (
Erlangen
,
Germany
,
2010
), Pt. 2, Vol. 5, pp. 483–492.
32.
E.
Fallahi Sichani
,
S.
Kohl
, and
J. R.
Duflou
, “
Plasma detection and control requirements for CO2 laser cutting
,”
CIRP Ann.
62
,
215
218
(
2013
).
33.
L.
Mazzoleni
,
A. G.
Demir
,
L.
Caprio
,
M.
Pacher
, and
B.
Previtali
, “
Real-time observation of melt pool in selective laser melting: Spatial, temporal and wavelength resolution criteria
,”
IEEE Trans. Instrum. Meas.
69
,
1179
1190
(
2019
).
34.
M.
Pacher
,
L.
Mazzoleni
,
L.
Caprio
,
A. G.
Demir
, and
B.
Previtali
, “
Estimation of melt pool size by complementary use of external illumination and process emission in coaxial monitoring of selective laser melting
,”
J. Laser Appl.
31
,
022305
(
2019
).
35.
VDI-Gesellschaft Produktionstechnik
, “Quality of cut faces of (sheet) metal parts after cutting, blanking, trimming or piercing - Laser cutting,” Standard (Verein Deutscher Ingenieure, Duesseldorf, DE, 1994).
36.
C.
Goppold
,
F.
Urlau
,
T.
Pinder
,
P.
Herwig
, and
A. F.
Lasagni
, “
Experimental investigation of cutting performance for different material compositions of Cr/Ni-steel with 1 µm laser radiation
,”
J. Laser Appl.
30
,
031501
(
2018
).
37.
D.
Lowe
, “Object recognition from local scale-invariant features,” in Proceedings of the Seventh IEEE International Conference on Computer Vision (IEEE, Kerkyra, 1999), Vol. 2, pp. 1150–1157.
38.
J.
Canny
, “
A computational approach to edge detection
,”
IEEE Trans. Pattern Anal. Mach. Intell.
PAMI-8
,
679
698
(
1986
).
39.
T.
Wang
,
Y.
Chen
,
M.
Qiao
, and
H.
Snoussi
, “
A fast and robust convolutional neural network-based defect detection model in product quality control
,”
Int. J. Adv. Manuf. Technol.
94
,
3465
3471
(
2018
).
You do not currently have access to this content.