The effect of pulsed laser polishing on rough niobium surfaces was investigated. We created different well-defined roughness profiles with standard emery papers and subsequently remelted random surface areas with a size of about 2 × 2 mm2 with nanosecond laser pulses (wavelength of 1064 nm, pulse length of 10 ns). Pristine as well as laser-treated surfaces were investigated using optical profilometry and atomic force microscopy, and the surface topography was described by means of correlation functions. Uniformly rough and highly smooth surface geometries were achieved for fractals above and below 7 μm, respectively. Moreover, the behavior of foreign particles during the laser processing was investigated in detail. The polishing procedure was also monitored point by point by detecting electrical signals, i.e., sample charging, which resulted from the intense laser illumination. The measured electrical charges were found to be correlated with the local surface texture. Thus, regions with initially high roughness profiles and regions with extensive laser-induced defects could be directly identified from the detected electrical signals.

1.
A.
Krishnan
and
F.
Fengzhou
, “
Review on mechanism and process of surface polishing using lasers
,”
Front. Mech. Eng.
14
,
299
319
(
2019
).
2.
J. D.
Miller
,
O. R.
Tutunea-Fatan
, and
E. V.
Bordatchev
, “
Experimental analysis of laser and scanner control parameters during laser polishing of H13 steel
,”
Procedia Manuf.
10
,
720
729
(
2017
).
3.
M.
Bereznai
,
I.
Pelsoczi
,
Z.
Toth
,
K.
Turzo
,
M.
Radnai
,
Z.
Bor
, and
A.
Fazekas
, “
Surface modifications induced by ns and sub-ps excimer laser pulses on titanium implant material
,”
Biomaterials
24
,
4197
4203
(
2003
).
4.
T.
Dobrev
,
D. T.
Pham
, and
S. S.
Dimov
, “
Techniques for improving surface quality after laser milling
,”
Proc. Inst. Mech. Eng. Part B
222
,
55
65
(
2008
).
5.
A.
Gisario
,
D.
Bellisario
, and
F.
Veniali
, “
Thermal-morphological analysis of diode laser polishing on sintered bronze
,”
Int. J. Mater Form.
3
,
1067
1070
(
2010
).
6.
T. L.
Perry
,
D.
Werschmoeller
,
X.
Li
,
F. E.
Pfefferkorn
, and
N. A.
Duffie
, “
The effect of laser pulse duration and feed rate on pulsed laser polishing of microfabricated nickel samples
,”
J. Eng. Ind.
131
,
031002
(
2009
).
7.
A. M. K.
Hafiz
,
E. V.
Bordatchev
, and
R. O.
Tutunea-Fatan
, “
Influence of overlap between the laser beam tracks on surface quality in laser polishing of AISI H13 tool steel
,”
J. Manuf. Process.
14
,
425
434
(
2012
).
8.
C.
Nusser
,
I.
Wehrmann
, and
E.
Willenborg
, “
Influence of intensity distribution and pulse duration on laser micro polishing
,”
Phys. Procedia
12
,
462
471
(
2011
).
9.
M.
Vadali
,
C.
Ma
,
N. A.
Duffie
,
X.
Li
, and
F. E.
Pfefferkorn
, “
Pulsed laser micro polishing: Surface prediction model
,”
J. Manuf. Process.
14
,
307
315
(
2012
).
10.
Z.
Xiang
,
M.
Yin
,
G.
Dong
,
X.
Mei
, and
G.
Yin
, “
Modeling of the thermal physical process and study on the reliability of linear energy density for selective laser melting
,”
Results Phys.
9
,
939
946
(
2018
).
11.
J. J.
Diaz Leon
,
A. M.
Hiszpanski
,
T. C.
Bond
, and
J. D.
Kuntz
, “
Design rules for tailoring antireflection properties of hierarchical optical structures
,”
5
,
1700080
(
2017
).
12.
V.
Porshyn
,
P.
Serbun
, and
D.
Lützenkirchen-Hecht
, “
Field emission from laser-processed niobium (110) single crystals
,”
Phys. Rev. Accel. Beams
22
,
023101
(
2019
).
13.
A.
Gurevich
, “
Theory of RF superconductivity for resonant cavities
,”
Supercond. Sci. Technol.
30
,
034004
(
2017
).
14.
A.
Navitski
,
S.
Lagotzky
,
D.
Reschke
,
X.
Singer
, and
G.
Müller
, “
Field emitter activation on cleaned crystalline niobium surfaces relevant for superconducting rf technology
,”
Phys. Rev. ST Accel. Beams
16
,
112001
(
2013
).
15.
S.
Lagotzky
and
G.
Müller
, “
Statistical model for field emitter activation on metallic surfaces used in high gradient accelerating structures
,”
Nucl. Instrum. Methods Phys. Res. A
806
,
193
198
(
2016
).
16.
W.
Singer
,
X.
Singer
,
A.
Brinkmann
,
J.
Iversen
,
A.
Matheisen
,
A.
Navitski
,
Y.
Tamashevich
,
P.
Michelato
, and
L.
Monaco
, “
Superconducting cavity material for the European XFEL
,”
Supercond. Sci. Technol.
28
,
085014
(
2015
).
17.
F.
Barkov
,
A.
Romanenko
, and
A.
Grassellino
, “
Direct observation of hydrides formation in cavity-grade niobium
,”
Phys. Rev. ST Accel. Beams
15
,
122001
(
2012
).
18.
L.
Névot
and
P.
Croce
, “
Caractérisation des surfaces par réflexion rasante de rayons X. Application à l’étude du polissage de quelques verres silicates
,”
Revue Phys. Appl.
15
,
761
779
(
1980
).
19.
H.
Öztürk
and
I. C.
Noyan
, “
Expected values and variances of Bragg peak intensities measured in a nanocrystalline powder diffraction experiment
,”
J. Appl. Cryst.
50
,
1307
1322
(
2017
).
20.
S. S.
Mao
,
X.
Mao
,
R.
Greif
, and
R. E.
Russo
, “
Initiation of an early-stage plasma during picosecond laser ablation of solids
,”
Appl. Phys. Lett.
77
,
2464
2466
(
2000
).
21.
X.
Zeng
,
X. L.
Mao
,
R.
Greif
, and
R. E.
Russo
, “
Experimental investigation of ablation efficiency and plasma expansion during femtosecond and nanosecond laser ablation of silicon
,”
Appl. Phys. A
80
,
237
241
(
2005
).
22.
G. J.
Galvin
,
M. O.
Thompson
,
J. W.
Mayer
,
R. B.
Hammond
,
N.
Paulter
, and
P. S.
Peercy
, “
Measurement of the velocity of the crystal-liquid interface in pulsed laser annealing of Si
,”
Phys. Rev. Lett.
48
,
33
36
(
1982
).
23.
R. F.
Wood
and
G. E.
Giles
, “
Macroscopic theory of pulsed-laser annealing. I. Thermal transport and melting
,”
Phys. Rev. B
23
,
2923
2942
(
1981
).
24.
H.
Niedrig
, “
Ion and electron emission from liquid metal sources
,”
Scanning Microsc.
10
,
919
935
(
1996
).
25.
A. K.
Vijh
and
P.
Lenfant
, “
On the constant ‘A0’ in the Richardson–Dushman equation
,”
Can. J. Phys.
51
,
111
113
(
1973
).
26.
B. J.
Hopkins
and
M.
Ibrahim
, “
Oxygen adsorption on the (110) face of tantalum, niobium, molybdenum and tungsten single crystals
,”
Vacuum
23
,
135
137
(
1973
).
27.
R. E.
Einziger
,
J. N.
Mundy
, and
H. A.
Hoff
, “
Niobium self-diffusion
,”
Phys. Rev. B
17
,
440
448
(
1978
).
28.
G.
Palasantzas
, “
Static and dynamic aspects of the rms local slope of growing random surfaces
,”
Phys. Rev. E
56
,
1254
1257
(
1997
).
29.
B. B.
Mandelbrot
,
D. E.
Passoja
, and
A. J.
Paullay
, “
Fractal character of fracture surfaces of metals
,”
Nature
308
,
721
722
(
1984
).
30.
P.
Pfeifer
, “
Fractal dimensions as working tool for surface-roughness problems
,”
Appl. Surf. Sci.
18
,
146
164
(
1984
).
31.
M.
Tarnopolski
, “
On the relationship between the Hurst exponent, the ratio of the mean square successive difference to the variance, and the number of turning points
,”
Phys. A
461
,
662
673
(
2016
).
32.
T. D. B.
Jacobs
,
T.
Junge
, and
L.
Pastewka
, “
Quantitative characterization of surface topography using spectral analysis
,”
Surf. Topogr. Metrol. Prop.
5
,
013001
(
2017
).
33.
R.
Fossion
,
E.
Landa
,
P.
Stránský
,
V.
Velázquez
,
J. C.
López Vieyra
,
I.
Garduño
,
D.
García
, and
A.
Frank
, “
Scale invariance as a symmetry in physical and biological systems: Listening to photons, bubbles and heartbeats
,”
AIP Conf. Proc.
1323
,
74
90
(
2010
).
34.
N. M.
Bulgakova
,
A. V.
Bulgakov
, and
L. P.
Babich
, “
Energy balance of pulsed laser ablation: Thermal model revised
,”
Appl. Phys. A
79
,
1323
1326
(
2004
).
35.
A.
Thompson
,
D.
Attwood
,
E.
Gullikson
,
M.
Howells
,
K.-J.
Kim
,
J.
Kirz
,
J.
Kortright
,
I.
Lindau
,
Y.
Liu
,
P.
Pianetta
,
A.
Robinson
,
J.
Scofield
,
J.
Underwood
,
G.
Williams
, and
H.
Winick
,
X-Ray Data Booklet
(
Lawrence Berkeley National Laboratory
,
Berkeley
,
2009
).
36.
R.
Trivedi
and
W.
Kurz
, “
Dendritic growth
,”
Int. Mater. Rev.
39
,
49
74
(
1994
).
37.
J. D.
Hunt
and
S.-Z.
Lu
, “
Numerical modeling of cellular/dendritic array growth: spacing and structure predictions
,”
Metall. Mater. Trans. A
27
,
611
623
(
1996
).
38.
See supplementary material at http://dx.doi.org/10.2351/7.0000160 for more detailed information on the experimental setup and additional measurement data (AFM and SEM micrographs, EDX spectra, etc.).

Supplementary Material

You do not currently have access to this content.