The influence of wire feeding speed during laser welding with a filling wire was investigated by high-speed imaging and mechanical analysis of the droplet. A force relationship was found to analyze the droplet transition behavior at the end of the welding wire in the narrow-gap groove. Welding defects, mainly including nonfusion and porosity, were studied to reveal the formation mechanism and propose affective solutions. In this paper, it was found that the droplet transition was determined by the position of the melting end of the wire in the narrow-gap groove under the same parameters. The sidewall transition, the liquid bridge transition, and the spreading transition were found at different wire feeding speeds. As the wire feeding speed increases from 3 to 6 m/min, the weld depth increased 40%, the maximum weld width decreased 16%, and the minimum weld width increased 8%. More nonfusion and porosity defects and poor weld formation would appear at excessive wire feeding speed.

1.
T.
Jokinen
,
M.
Karhu
, and
V.
Kujanpaeae
, “
Welding of thick austenitic stainless steel using Nd:yttrium-aluminum-garnet laser with filler wire and hybrid process
,”
J. Laser. Appl.
15
,
220
224
(
2013
).
2.
Y.
Zhao
,
S. C.
Ma
,
J.
Huang
, and
Y. X.
Wu
, “
Narrow-gap laser welding using filler wire of thick steel plates
,”
Int. J. Adv. Manuf. Technol.
93
,
2955
2962
(
2017
).
3.
Bing
Han
,
Wang
Tao
,
Yanbin
Chen
, and
Hao
Li
, “
Double-sided laser beam welded T-joints for aluminum-lithium alloy aircraft fuselage panels: Effects of filler elements on microstructure and mechanical properties
,”
Opt. Laser. Technol.
93
,
99
108
(
2017
).
4.
J.
Ning
,
L. J.
Zhang
,
Q. L.
Bai
,
X. Q.
Yin
,
J.
Niu
, and
J. X.
Zhang
, “
Comparison of the microstructure and mechanical performance of 2A97 Al-Li alloy joints between autogenous and non-autogenous laser welding
,”
Mater. Des.
120
,
144
156
(
2017
).
5.
J.
Ahn
,
L.
Chen
,
E.
He
,
C. M.
Davies
, and
J. P.
Dear
, “
Effect of filler metal feed rate and composition on microstructure and mechanical properties of fibre laser welded AA 2024-T3
,”
J. Manuf. Process.
25
,
26
36
(
2017
).
6.
Y. C.
Yu
,
S. L.
Yang
,
Y.
Yin
,
C. M.
Wang
,
X. Y.
Hu
,
X. X.
Meng
, and
S. F.
Yu
, “
Multi-pass laser welding of thick plate with filler wire by using a narrow gap joint configuration
,”
J. Mech. Sci. Technol.
27
,
2125
2131
(
2013
).
7.
Y.
Zhao
,
Q. L.
Yang
,
J.
Huang
,
J. S.
Zou
, and
Y. X.
Wu
, “
Droplet transfer and weld geometry in laser welding with filling wire
,”
Int. J. Adv. Manuf. Technol.
90
,
2153
2161
(
2017
).
8.
A.
Salminen
,
H.
Piili
, and
T.
Purtonen
, “
The characteristics of high power fibre laser welding
,”
J. Mech. Eng. Sci.
224
,
1019
1029
(
2010
).
9.
Y.
Zhao
,
F.
Su
,
J.
Huang
,
J. S.
Zou
, and
Y. X.
Wu
, “
Microstructure and mechanical properties of a 10CrNi3MoV thick plate welded joint using narrow gap laser welding with filler wire
,”
Laser Eng.
41
,
57
72
(
2018
).
10.
Kangda
Hao
,
Geng
Li
,
Ming
Gao
, and
Xiaoyan
Zeng
, “
Weld formation mechanism of fiber laser oscillating welding of austenitic stainless steel
,”
J. Mater. Process. Technol.
225
,
77
83
(
2015
).
11.
K. Simant
Bal
,
J. Dutta
Majumdar
, and
A. Roy
Choudhury
, “
Effect of post-weld heat treatment on the tensile strength of laser beam welded Hastelloy C-276 sheets at different heat inputs
,”
J. Manuf. Process.
37
,
578
594
(
2019
).
12.
Y. N.
Zhang
,
X.
Cao
, and
P.
Wanjara
, “
Microstructure and hardness of fiber laser deposited Inconel 718 using filler wire
,”
Int. J. Adv. Manuf. Technol.
69
,
2569
2581
(
2013
).
13.
Morgan
Nilsen
,
Fredrik
Sikstrom
, and
Anna-Karin
Christiansson
, “
Adaptive control of the filler wire rate during laser beam welding of squared butt joints with varying gap width
,”
Int. J. Adv. Manuf. Technol.
102
,
3667
3676
(
2019
).
14.
H.
Shi
,
K.
Zhang
,
Z. Y.
Xu
,
T. Y.
Huang
,
L. W.
Fan
, and
W. N.
Bao
, “
Applying statistical models optimize the process of multi-pass narrow-gap laser welding with filler wire
,”
Int. J. Adv. Manuf. Technol.
75
,
279
291
(
2014
).
15.
F.
Mirakhorli
,
F.
Nadeau
, and
G. C.
Guillemette
, “
Single pass laser cold-wire welding of thick section AA6061-T6 aluminum alloy
,”
J. Laser Appl.
30
,
32421.1-6
(
2018
).
16.
Z.
Zhang
,
R.
Wang
,
G.
Gou
,
H.
Chen
, and
W.
Gao
, “
Droplet transfer behavior of narrow gap laser wire filling welding
,”
Int. J. Mod. Phys. B
33
,
1940045
(
2019
).
17.
R. Y.
Li
,
J.
Yue
,
R.
Sun
,
G. Y.
Mi
,
C. M.
Wang
, and
X. Y.
Shao
, “
A study of droplet transfer behavior in ultra-narrow gap laser arc hybrid welding
,”
Int. J. Adv. Manuf. Technol.
87
,
2997
3008
(
2016
).
18.
A. S.
Salminen
and
V. P.
Kujanpaeae
, “
Effect of wire feed position on laser welding with filler wire
,”
J. Laser Appl.
15
,
2
10
(
2003
).
19.
E.
Akman
,
A.
Demir
,
T.
Canel
, and
T.
Sinmazcelik
, “
Laser welding of Ti6Al4V titanium alloys
,”
J. Mater. Process. Technol.
209
,
3705
3713
(
2019
).
20.
J. A.
Francis
,
N.
Holtum
,
S.
Olschok
,
M. J.
Roy
,
A. N.
Vasileiou
,
S.
Jakobs
,
U.
Reisgen
, and
M. C.
Smith
, “
Vacuum laser welding of SA508 steel
,”
J. Mater. Process. Technol.
274
,
116269
(
2019
).
21.
Y.
Zhao
,
K. L.
Zhu
,
Q. J.
Ma
,
Q.
Shang
,
J.
Huang
, and
D. J.
Yang
, “
Plasma behavior and control with small diameter assisting gas nozzle during CO2 laser welding
,”
J. Mater. Process. Technol.
237
,
208
215
(
2016
).
22.
Z. M.
Gao
,
P.
Jiang
,
C. M.
Wang
,
X. Y.
Shao
,
S. Y.
Pang
,
Q.
Zhou
,
X. B.
Li
, and
Y. L.
Wang
, “
Study on droplet transfer and weld quality in laser-MIG hybrid welding of 316L stainless steel
,”
Int. J. Adv. Manuf. Technol.
88
,
483
493
(
2017
).
23.
W.
Meng
,
Z. G.
Li
,
F. G.
Lu
,
Y. X.
Wu
,
J. H.
Chen
, and
S.
Katayama
, “
Porosity formation mechanism and its prevention in laser lap welding for T-joints
,”
J. Mater. Process. Technol.
214
,
1658
1664
(
2014
).
24.
J.
Yang
,
X. Y.
Li
,
L.
Chen
,
S. L.
Gong
, and
F.
Xu
, “
Typical joint defects in laser welded aluminium-lithium alloy
,”
Laser Eng.
22
,
337
350
(
2012
).
You do not currently have access to this content.