Additive manufacturing of metal matrix composite (MMC) is a challenging field to explore. Besides components’ geometric constitution, requirements related to final microstructures must be met. Depending on the application, such as tribology, machining, or magnetism related, there is a need to preserve a specific phase, which is generally responsible for the engineering function of the fabricated component. This work analyzes the laser power (P) parameter influence on track’s geometry and microstructure aspects of Fe and Sn-based alloy processed by directed energy deposition (DED). Objectives are observing the interaction between Fe-α and Sn-based alloy as a function of P and, then, define a processing window that allows the MMC microstructure. Experimental methodology relied on single-tracks bead-on-plate deposits with P variations. To assess track’s geometry and microstructure changes, postprocessing analyses were performed by scanning electron microscopy (SEM) and energy dispersive x-ray spectroscopy (EDS). Results show that P influences positively on tracks’ height, width, and cross section area. Greater laser power resulted in higher geometric aspects. Microstructure evolution was observed as P was enhanced from 150 to 700 W. In lower P ranges, Fe particles are not strongly affected by the heat source, resulting in an MMC microstructure mainly composed by Fe-α dispersed on a Sn-rich alloying matrix. When more thermal energy is provided due to higher laser power levels, Fe and Sn diffuse to a greater extent, resulting in an increased quantity of Fe-Sn phases and a more homogeneous microstructure. EDS mapping suggests that formed phases are Fe solid solutions containing Sn. Then, it is concluded that MMC microstructures are possible to be achieved around a P window of 150 W.

1.
P. S.
Bains
,
S. S.
Sidhu
, and
H. S.
Payal
, “
Fabrication and machining of metal matrix composites: A review
,”
Mater. Manuf. Process.
31
,
553
573
(
2016
).
2.
A.
Mortensen
and
J.
Llorca
, “
Metal matrix composites
,”
Annu. Rev. Mater. Res.
40
,
243
270
(
2010
).
3.
V. A.
Mechnik
,
N. A.
Bondarenko
,
S. N.
Dub
,
V. M.
Kolodnitskyi
,
Y. V.
Nesterenko
,
N. O.
Kuzin
,
I. M.
Zakiev
, and
E. S.
Gevorkyan
, “
A study of microstructure of Fe-Cu-Ni-Sn and Fe-Cu-Ni-Sn-VN metal matrix for diamond containing composites
,”
Mater. Charact.
146
,
209
216
(
2018
).
4.
L.
Reinert
,
S.
Suarez
,
T.
Müller
, and
F.
Mücklich
, “
Carbon nanoparticle-reinforced metal matrix composites: Microstructural tailoring and predictive modeling
,”
Adv. Eng. Mater.
19
,
1600750
(
2017
).
5.
K.
Konopka
and
A.
Oziȩbło
, “
Microstructure and the fracture toughness of the Al2O3–Fe composites
,”
Mater. Charact.
46
,
125
129
(
2001
).
6.
K. M.
Rahman
,
V. A.
Vorontsov
,
S. M.
Flitcroft
, and
D.
Dye
, “
A high strength Ti-SiC metal matrix composite
,”
Adv. Eng. Mater.
19
,
1700027
(
2017
).
7.
M.
Zadra
and
L.
Girardini
, “
High-performance, low-cost titanium metal matrix composites
,”
Mater. Sci. Eng. A
608
,
155
163
(
2014
).
8.
M.
Zhang
,
W.
Zhang
,
Y.
Liu
,
B.
Liu
, and
J.
Wang
, “
FeCoCrNiMo high-entropy alloys prepared by powder metallurgy processing for diamond tool applications
,”
Powder Metall.
61
,
123
130
(
2018
).
9.
J.
Liu
,
J. D.
Moore
,
K. P.
Skokov
,
M.
Krautz
,
K.
Löwe
,
A.
Barcza
,
M.
Katter
, and
O.
Gutfleisch
, “
Exploring La(Fe,Si)13-based magnetic refrigerants towards application
,”
Scr. Mater.
67
,
584
589
(
2012
).
10.
S. M.
Thompson
,
L.
Bian
,
N.
Shamsaei
, and
A.
Yadollahi
, “
An overview of direct laser deposition for additive manufacturing; Part I: Transport phenomena, modeling and diagnostics
,”
Addit. Manuf.
8
,
36
62
(
2015
).
11.
R.
Vilar
, “
Laser cladding
,”
J. Laser Appl.
11
,
64
79
(
1999
).
12.
C.
Selcuk
, “
Laser metal deposition for powder metallurgy parts
,”
Powder Metall.
54
(
2
),
94
99
(
2011
), available at https://www.tandfonline.com/doi/full/10.1179/174329011X12977874589924.
13.
C.
Leyens
and
E.
Beyer
, “
Innovations in laser cladding and direct laser metal deposition
,” in
Laser Surface Engineering: Processes and Applications
(Woodhead Publishing Series in Electronic and Optical Materials, Cambridge, UK,
2014
), pp.
181
192
.
14.
C.
Hong
,
D.
Gu
,
D.
Dai
,
S.
Cao
,
M.
Alkhayat
,
Q.
Jia
,
A.
Gasser
,
A.
Weisheit
,
I.
Kelbassa
,
M.
Zhong
, and
R.
Poprawe
, “
High-temperature oxidation performance and its mechanism of TiC/Inconel 625 composites prepared by laser metal deposition additive manufacturing
,”
J. Laser Appl.
27
,
S17005
(
2015
).
15.
J.
Wang
,
L.
Li
,
C.
Tan
,
H.
Liu
, and
P.
Lin
, “
Microstructure and tensile properties of TiC p /Ti6Al4V titanium matrix composites manufactured by laser melting deposition
,”
J. Mater. Process. Technol.
252
,
524
536
(
2018
).
16.
J.
Wang
,
L.
Li
, and
W.
Tao
, “
Crack initiation and propagation behavior of WC particles reinforced Fe-based metal matrix composite produced by laser melting deposition
,”
Opt. Laser Technol.
82
,
170
182
(
2016
).
17.
E. O.
Olakanmi
,
S. T.
Nyadongo
,
K.
Malikongwa
,
S. A.
Lawal
,
A.
Botes
, and
S. L.
Pityana
, “
Multi-variable optimisation of the quality characteristics of fiber-laser cladded Inconel-625 composite coatings
,”
Surf. Coatings Technol.
357
,
289
303
(
2019
).
18.
A. N.
Jinoop
,
C. P.
Paul
, and
K. S.
Bindra
, “
Laser assisted direct energy deposition of Hastelloy-X
,”
Opt. Laser Technol.
109
,
14
19
(
2019
).
19.
B.
Graf
,
A.
Marko
,
T.
Petrat
,
A.
Gumenyuk
, and
M.
Rethmeier
, “
3D laser metal deposition: Process steps for additive manufacturing
,”
Weld. World
62
,
877
883
(
2018
).
20.
D. J.
Corbin
,
A. R.
Nassar
,
E. W.
Reutzel
,
A. M.
Beese
, and
N. A.
Kistler
, “
Effect of directed energy deposition processing parameters on laser deposited Inconel ® 718: External morphology
,”
J. Laser Appl.
29
,
022001
(
2017
).
21.
Y.
Huang
,
M. B.
Khamesee
, and
E.
Toyserkani
, “
A new physics-based model for laser directed energy deposition (powder-fed additive manufacturing): From single-track to multi-track and multi-layer
,”
Opt. Laser Technol.
109
,
584
599
(
2019
).
22.
A. R. C.
Nascimento
,
F. B.
Ettouil
,
C.
Moreau
,
S.
Savoie
, and
R.
Schulz
, “
Production of babbitt coatings by high velocity oxygen fuel (HVOF) spraying
,”
J. Therm. Spray Technol.
26
,
1732
1740
(
2017
).
23.
P. R. C.
Alcover Junior
and
A. G. M.
Pukasiewicz
, “
Evaluation of microstructure, mechanical and tribological properties of a Babbitt alloy deposited by arc and flame spray processes
,”
Tribol. Int.
131
,
148
157
(
2019
).
24.
M.
Winnicki
,
A.
Baszczuk
,
M.
Rutkowska-Gorczyca
,
A.
Małachowska
, and
A.
Ambroziak
, “
Corrosion resistance of tin coatings deposited by cold spraying
,”
Surf. Eng.
32
,
691
700
(
2016
).
25.
C.
Echevarria-Bonet
,
N.
Iglesias
,
J. S.
Garitaonandia
,
D.
Salazar
,
G. C.
Hadjipanayis
, and
J. M.
Barandiaran
, “
Structural and magnetic properties of hexagonal Fe3Sn prepared by non-equilibrium techniques
,”
J. Alloys Compd.
769
,
843
847
(
2018
).
26.
B.
Fayyazi
,
K. P.
Skokov
,
T.
Faske
,
D. Y.
Karpenkov
,
W.
Donner
, and
O.
Gutfleisch
, “
Bulk combinatorial analysis for searching new rare-earth free permanent magnets: Reactive crucible melting applied to the Fe-Sn binary system
,”
Acta Mater.
141
,
434
443
(
2017
).
27.
H.
Zhang
,
J.
Liu
,
M.
Zhang
,
Y.
Shao
,
Y.
Li
, and
A.
Yan
, “
LaFe 11.6 Si 1.4 H y/Sn magnetocaloric composites by hot pressing
,”
Scr. Mater.
120
,
58
61
(
2016
).
28.
X. C.
Zhong
,
X. L.
Feng
,
J. H.
Huang
,
D. L.
Jiao
,
H.
Zhang
,
W. Q.
Qiu
,
Z. W.
Liu
, and
R. V.
Ramanujan
, “
A bimodal particle size distribution enhances mechanical and magnetocaloric properties of low-temperature hot pressed Sn-bonded La0.8Ce0.2(Fe0.95Co0.05)11.8Si1.2 bulk composites
,”
J. Magn. Magn. Mater.
469
,
133
137
(
2019
).
29.
L. E.
dos Santos Paes
,
M.
Pereira
,
W. L.
Weingaertner
,
A.
Scotti
, and
T.
Souza
, “
Comparison of methods to correlate input parameters with depth of penetration in LASER welding
,”
Int. J. Adv. Manuf. Technol.
101
(
5–8
), 1157–1169 (
2018
).
30.
R.
Lück
and
B.
Predel
, “
The Enthalpy of mixing of liquid iron–tin alloys determined by means of a new high-temperature calorimeter
,”
Z. Met.
76
(
10
),
684
686
(
1985
).
31.
K. C. H.
Kumar
,
P.
Wollants
, and
L.
Delaey
, “
Thermodynamic evaluation of Fe-Sn phase diagram
,”
Calphad.
20
,
139
149
(
1996
).
32.
Y.-C.
Huang
,
W.
Gierlotka
, and
S.-W.
Chen
, “
Sn–Bi–Fe thermodynamic modeling and Sn–Bi/Fe interfacial reactions
,”
Intermetallics
18
,
984
991
(
2010
).
33.
M.
Singh
and
S.
Bhan
, “
Contribution to the Fe–Sn system
,”
J. Mater. Sci. Lett.
5
,
733
735
(
1986
).
34.
J.
Miettinen
, “
Thermodynamic description of the Cu–Fe–Sn system at the Cu–Fe side
,”
Calphad.
32
,
500
505
(
2008
).
35.
J.-C.
Savidan
,
J.-M.
Joubert
, and
C.
Toffolon-Masclet
, “
An experimental study of the Fe–Sn–Zr ternary system at 900 °C
,”
Intermetallics.
18
,
2224
2228
(
2010
).
36.
B.
Predel
and
M.
Frebel
, “
Precipitation behavior of α-solid solutions of the Fe-Sn system
,”
Metall. Trans.
4
,
243
249
(
1973
).
37.
R.
Vogel
and
W.
von Mässenhausen
, “
Das system Silber-Eisen-Silizium
,”
Arch. Für Das Eisenhüttenwes
27
,
143
145
(
1956
).
You do not currently have access to this content.