Dual-beam laser welding using an adjustable ring mode (ARM) fiber laser was implemented to evaluate weld bead characteristics and hot cracking susceptibility. An ARM laser with dual beams having diameters of 175 and 450 μm was implemented in the focal position. By controlling the core laser power (700–1800 W) and ring laser power (0–1100 W), respectively, full penetration welds were achieved for a 1 mm-thick Al 6014-T4 alloy even at a high welding speed of 120 mm/s under a total laser power of 1800 W. High welding speed enabled a small molten area and a narrow equiaxed dendrite structure along the bead center, which reduced hot cracking susceptibility.
REFERENCES
1.
Y.
Arata
and E.
Nabegata
, “Tandem electron beam welding (report-I)
,” Trans. JWRI
7
, 101
–109
(1978
). 2.
C. M.
Banas
and B. M.
Doyle
, “Twin spot laser welding,” Google Patents US4691093A (1 September, 1987
).3.
E.
Kannatey-Asibu
, “Thermal aspects of the split-beam laser welding concept
,” J. Eng. Mater. Technol.
113
, 215
–221
(1991
). 4.
Y.-N.
Liu
and E.
Kannatey-Asibu
, “Laser beam welding with simultaneous gaussian laser preheating
,” J. Heat Transfer
115
, 34
–41
(1993
). 5.
J.
Milberg
and A.
Trautmann
, “Defect-free joining of zinc-coated steels by bifocal hybrid laser welding
,” Prod. Eng.
3
, 9
–15
(2009
). 6.
S.
Iqbal
, M. M. S.
Gualini
, and A. U.
Rehman
, “Dual beam method for laser welding of galvanized steel: Experimentation and prospects
,” Opt. Laser Technol.
42
, 93
–98
(2010
). 7.
F.
Nagel
, M.
Stambke
, and J. P.
Bergmann
, “Reduction of spatter formation by superposition of two laser intensities
,” in The 35th International Congress on Applications of Lasers & Electro-Optics
, San Diego, CA
, 16 October 2016
(LIA
, Orlando
, 2016
), pp. 16
–20
.8.
F.
Nagel
, C.
Drechsela
, and J. P.
Bergmanna
, “Reduction of the spatter formation due to the use of superposition of two laser intensities
,” in Proceedings of Laser in Manufacturing 2017
, Munich, Germany
, 26 June 2017
(German Scientific Laser Society
, Hannover
, 2017
).9.
A.
Grajcar
, M.
Morawiec
, M.
Różański
, and S.
Stano
, “Twin-spot laser welding of advanced high-strength multiphase microstructure steel
,” Opt. Laser Technol.
92
, 52
–61
(2017
). 10.
A.
Punkari
, D.
Weckman
, and H.
Kerr
, “Effects of magnesium content on dual beam Nd: YAG laser welding of Al–Mg alloys
,” Sci. Technol. Welding Joining
8
, 269
–281
(2003
). 11.
X.
Wang
, H.-P.
Wang
, F.
Lu
, B. E.
Carlson
, and Y.
Wu
, “Analysis of solidification cracking susceptibility in side-by-side dual-beam laser welding of aluminum alloys
,” Int. J. Adv. Manuf. Technol.
73
, 73
–85
(2014
). 12.
M.
Harooni
, B.
Carlson
, and R.
Kovacevic
, “Dual-beam laser welding of AZ31B magnesium alloy in zero-gap lap joint configuration
,” Opt. Laser Technol.
56
, 247
–255
(2014
). 13.
S.
Pang
, W.
Chen
, J.
Zhou
, and D.
Liao
, “Self-consistent modeling of keyhole and weld pool dynamics in tandem dual beam laser welding of aluminum alloy
,” J. Mater. Process. Technol.
217
, 131
–143
(2015
). 14.
J. P.
Bergmann
, M.
Bielenin
, and T.
Feustel
, “Aluminum welding by combining a diode laser with a pulsed Nd:YAG laser
,” Welding World
59
, 307
–315
(2015
). 15.
H.
Laukant
, C.
Wallmann
, M.
Korte
, and U.
Glatzel
, “Flux-Less Joining Technique of Aluminium With Zinc-Coated Steel Sheets by a Dual-Spot-Laser Beam
,” Adv. Mater. Res
. 6–8
, 163
–170
(2005
). 16.
S.
Yan
, Z.
Hong
, T.
Watanabe
, and T.
Jingguo
, “CW/PW dual-beam YAG laser welding of steel/aluminum alloy sheets
,” Opt. Lasers Eng.
48
, 732
–736
(2010
). 17.
M.
Mohammadpour
, N.
Yazdian
, G.
Yang
, H.-P.
Wang
, B.
Carlson
, and R.
Kovacevic
, “Effect of dual laser beam on dissimilar welding-brazing of aluminum to galvanized steel
,” Opt. Laser Technol.
98
, 214
–228
(2018
). 18.
19.
S.
Haraguchi
, Y.
Okamoto
, Y.
Uno
, T.
Sakagawa
, and S.-I.
Nakashiba
, “Investigation on welding phenomenon for aluminum alloy by superposition of pulsed YAG laser and diode laser
,” J. Adv. Mech. Des., Syst., Manuf.
4
, 875
–882
(2010
). 20.
S.-I.
Nakashiba
, Y.
Okamoto
, T.
Sakagawa
, K.
Miura
, A.
Okada
, and Y.
Uno
, “Welding characteristics of aluminum alloy by pulsed Nd:YAG laser with pre-and post-irradiation of superposed continuous diode laser
,” in The 30th International Congress on Applications of Lasers & Electro-Optics
, Orlando, FL
, 23 October 2011
(LIA
, Orlando
, 2011
), pp. 825
–832
.21.
C.
Rüttimann
, U.
Dürr
, and A.
Moalem
, “Reliable laser micro-welding of copper
,” in The 36th International Congress on Applications of Lasers & Electro-Optics
, Anaheim
, CA, 26 September 2010
(LIA
, Orlando
, 2010
), pp. 95
–100
.22.
N.
Speker
, P.
Haug
, S.
Feuchtenbeiner
, T.
Hesse
, and D.
Havrilla
, “BrightLine weld-spatter reduced high speed welding with disk lasers
,” in The 36th International Congress on Applications of Lasers & Electro-Optics
, Atlanta, GA
, 22 October 2017
(LIA
, Orlando
, 2017
), paper no. 408.23.
T.
Hesse
, N.
Speker
, P.
Haug
, J.-P.
Hermani
, J.
Seebach
, and D.
Havrilla
, “Laser welding with beam shaping – latest application results
,” in The 37th International Congress on Applications of Lasers & Electro-Optics
, Orlando, FL
, 14 October 2018
(LIA
, Orlando
, 2018
), Paper no. 702.24.
P.
Kallage
, “To application demands adapted beam qualities for improved process results
,” in The 36th International Congress on Applications of Lasers & Electro-Optics
, Atlanta, GA
, 22 October 2017
(LIA
, Orlando
, 2017
), paper no. 605.25.
P.-O.
Ulmanen
, “The effect of high power adjustable ring mode fiver laser for material cutting
,” Master thesis
, The Trepere University of Technology
, 2016
.26.
M. R.
Maina
, Y.
Okamoto
, A.
Okada
, M.
Närhi
, J.
Kangastupa
, and J.
Vihinen
, “High surface quality welding of aluminum using adjustable ring-mode fiber laser
,” J. Mater. Process. Technol.
258
, 180
–188
(2018
). 27.
M.
Kang
, H.
Han
, and C.
Kim
, “Microstructure and solidification crack susceptibility of Al 6014 molten alloy subjected to a spatially oscillated laser beam
,” Materials
11
, 648
(2018
). 28.
S.
Ramasamy
, “CO2 and Nd: YAG laser beam welding of 6111-T4 and 5754-O aluminum alloys for automotive applications
,” Sci. Technol. Welding Joining
6
, 182
–190
(1997
). 29.
S.
Venkat
, C.
Albright
, S.
Ramasamy
, and J.
Hurley
, “CO2 laser beam welding of aluminum 5754-O and 6111-T4 alloys
,” Welding J.
66
, 275s
–282s
(1997
).30.
C.
Kim
, M.
Kang
, and N.
Kang
, “Solidification crack and morphology for laser weave welding of Al 5J32 alloy
,” Sci. Technol. Welding Joining
18
, 57
–61
(2013
). 31.
D.
Weller
, C.
Hagenlocher
, T.
Steeb
, R.
Weber
, and T.
Graf
, “Self-restraint hot cracking test for aluminum alloys using digital image correlation
,” Proc. CIRP
74
, 430
–433
(2018
). 32.
F.
Matsuda
and K.
Nakata
, “A new test specimen for self-restraint solidification crack susceptibility test of electron-beam welding bead: Fan-shaped cracking test
,” Trans. JWRI
11
, 87
–94
(1982
). 33.
W.
Dan
, S.
Shuntaro
, K.
Kota
, S.
Kenji
, and Y.
Motomichi
, “Investigation of evaluation method for hot cracking susceptibility of 310S stainless steel during laser welding using trans-varestraint test
,” Q. J. Jpn. Welding Soc.
33
, 39s
–43s
(2015
). © 2020 Author(s).
2020
Author(s)
You do not currently have access to this content.