When the melt is ejected from the cut kerf by an assist gas during laser fusion cutting, a fraction of it may adhere to the lower cut edge and form a burr. Adjusting the process parameters to minimize burr formation is a challenging task that becomes more and more difficult as sheet thickness increases. The burr length has significant relevance when the quality of a cut is evaluated, but the underlying mechanisms that control its formation are still not fully understood. In this paper, new results of an experimental investigation focused on identifying characteristic melt ejection regimes are presented. The experiments were conducted on 6 mm thick stainless steel sheets using a disk laser at a power of up to 10 kW. The melt flow exiting the kerf channel and the temporal formation of burr were analyzed using two high-speed cameras. The dependency of melt ejection regimes from process parameters as well as their influence on burr formation is discussed. Furthermore, the authors demonstrate that melt ejection forming a compact and stable threefold outflow is a characteristic property of a burrfree cut.

1.
D.
Petring
, “
Anwendungsorientierte Modellierung des Laserstrahlschneidens zur rechnergestützten Prozessoptimierung
,”
Doctor thesis
,
Shaker Verlag
,
1994
.
2.
A.
Dupre
,
Theorie Mechanique de la Chaleur
(
Gauthier-Villars
,
Paris
,
1869
), p.
369
.
3.
N.
Eustathopoulos
,
B.
Drevet
, and
M. G.
Nicholas
,
Wettability at High Temperatures
(
Pergamon
,
Oxford
,
1999
), Vol. 3.
4.
W. G.
Pritchard
,
V.
Saavedra
,
L. R.
Scott
, and
S. J.
Tavener
,
Theoretical Issues in the Modelling of Viscous Free-Surface Flows
(
Springer
,
New York
,
1994
), pp.
29
48
.
5.
A.
Yule
and
J.
Dunkley
,
Atomization of Melts for Powder Production and Spray Deposition
(
Clarendon Press
,
Oxford
,
1994
).
6.
B. S.
Yilbas
and
B. J.
Aleem
, “
Dross formation during laser cutting process
,”
J. Phys. D Appl. Phys.
39
,
1451
1461
(
2006
).
7.
D.
Petring
,
D.
Arntz
,
S.
Stoyanov
, and
F.
Schneider
, “
Effects of beam power and power density distribution on process and quality issues during fiber laser cutting of stainless steel sheet metal
,” in
Proceedings of LIM Conference 2019
,
Munich
,
24–27 June 2019
(WLT e.V., Erlangen,
2019
).
8.
H.
Zefferer
,
D.
Petring
, and
E.
Beyer
,
Investigations of the Gas Flow in Laser Beam Cutting, DVS-Berichte Band 135
(
Deutsche Verlag für Schweißtechnik
,
Düsseldorf
,
1991
).
9.
M.
Hansmann
,
L. A.
Decker
, and
J. L.
Ruge
, “
On-line control of the laser cutting process by monitoring the shower of sparks
,” in
Proceedings of 6th International Conference on Robot Vision and Sensory Control Systems
,
Paris
,
June 1986
(IFS, Bedford,
1986
), pp.
440
445
.
10.
I.
Miyamoto
and
H.
Maruo
, “
The mechanism of laser cutting
,”
Ind. Weld. J.
25
(
2
),
99
111
(
1992
).
11.
C. A.
Schneider
,
W. S.
Rasband
, and
K. W.
Eliceiri
, “
NIH Image to ImageJ: 25 years of image analysis
,”
Nat. Met.
9
,
671
675
(
2012
).
12.
K.
Hirano
and
R.
Fabbro
, “
Experimental observation of hydrodynamics of melt layer and striation generation during laser cutting of steel
,”
Phys. Procedia
12
,
555
564
(
2011
).
13.
D.
Arntz
,
D.
Petring
,
F.
Schneider
, and
R.
Poprawe
, “
In situ high speed diagnosis—A quantitative analysis of melt flow dynamics inside cutting kerfs during laser fusion cutting with 1 μm, wavelength
,”
J. Laser Appl.
31
,
022206
(
2019
).
14.
G.
Farnebäck
, “
Two-frame motion estimation based on polynomial expansion
,” in
SCIA 2003 Image Analysis
(Springer, Berlin,
2003
), pp.
363
370
.
15.
D. B.
Allan
,
T.
Caswell
,
N. C.
Keim
, and
C. M.
van der Wel
, see for “Trackpy v0.4.1.” Viewed on June 2019.
16.
D. L.
Chubb
,
F.
Calfo
,
M. W.
McConley
,
M. S.
McMaste
, and
A. A.
Afjeh
, A study of thin liquid sheet flows, NASA Technical Memorandum 106323 (
1993
).
17.
T. R.
Akylas
, 1.63J/2.26J Advanced fluid dynamics, 7.b-6 fluid sheets, Lectures MIT (
2017
).
You do not currently have access to this content.