The formation of self-assembled laser induced periodic surface structures (LIPSSs) after ultrashort pulsed laser ablation is still a matter of controversy in the literature. There is agreement that at least two different physical driving forces lead to ripples with distinguishable spatial periodicity. High spatial frequency LIPSSs with periodicity well below the incident wavelength are discriminated from low spatial frequency LIPSSs (LSFLs) revealing longer periodic structures. In general, both types of LIPSS appear after multipulse irradiation with the linear polarization direction on all material classes from metals to dielectrics. However, single-pulse induced LSFLs at 540 ± 35 nm periodicity with subpicosecond pulse are observed at linelike surface defects, e.g., scratches and grain boundaries. Depending on the difference in orientation between the electric field vector and the scratch direction, LIPSSs evolve upon ablation with 515 nm and 1 ps pulses near the threshold. This corroborates the theory proposed by Sipe et al. [Phys. Rev. B 27, 1141–1154 (1983)], where the impinging electromagnetic wave interacts with a collectively excited surface electron wave of the respective material at a surface defect. The observations on oxygenfree pure copper, zirconia, and a stainless steel substrate are discussed. Moreover, LSFLs generated with circular polarization at defects after single pulse ablation of wide bandgap zirconia ceramic are presented. In application, this phenomena affects the attainable surface quality, where LSFLs appear at defects such as scratches, grain boundaries, and, generally, material inhomogeneity. The absorptivity and ablation characteristic change leading to an altered material-laser interaction at the surface. This could be the root cause of conelike protrusion structures observed on stainless steel.

1.
J.
Bonse
,
S.
Hohm
,
S. V.
Kirner
,
A.
Rosenfeld
, and
J.
Kruger
, “
Laser-induced periodic surface structures—A scientific evergreen
,”
IEEE J. Sel. Top. Quantum Electron.
23
,
9000615
(
2017
).
2.
M.
Birnbaum
, “
Semiconductor surface damage produced by ruby lasers
,”
J. Appl. Phys.
36
,
3688
3689
(
1965
).
3.
J. E.
Sipe
,
J. F.
Young
,
J. S.
Preston
, and
H. M.
Van Driel
, “
Laser-induced periodic surface structure. I. Theory
,”
Phys. Rev. B
27
,
1141
1154
(
1983
).
4.
S.
Höhm
,
A.
Rosenfeld
,
J.
Krüger
, and
J.
Bonse
, “
Area dependence of femtosecond laser-induced periodic surface structures for varying band gap materials after double pulse excitation
,”
Appl. Surf. Sci.
278
,
7
12
(
2013
).
5.
J. F.
Young
,
J. S.
Preston
,
H. M.
van Driel
, and
J. E.
Sipe
, “
Laser-induced periodic surface structure. II. Experiments on Ge, Si, Al, and brass
,”
Phys. Rev. B
27
,
1155
1172
(
1983
).
6.
M.
Huang
,
F.
Zhao
,
Y.
Cheng
,
N.
Xu
, and
Z.
Xu
, “
Origin of laser-induced near-subwavelength ripples: Interference between surface plasmons and incident laser
,”
ACS Nano
3
,
4062
4070
(
2009
).
7.
I.
Gnilitskyi
,
T. J. Y.
Derrien
,
Y.
Levy
,
N. M.
Bulgakova
,
T.
Mocek
, and
L.
Orazi
, “
High-speed manufacturing of highly regular femtosecond laser-induced periodic surface structures: Physical origin of regularity
,”
Sci. Rep.
7/1
,
8485
(
2017
).
8.
K. R. P.
Kafka
,
D. R.
Austin
,
H.
Li
,
A. Y.
Yi
,
J.
Cheng
, and
E. A.
Chowdhury
, “
Time-resolved measurement of single pulse femtosecond laser-induced periodic surface structure formation induced by a pre-fabricated surface groove
,”
Opt. Express
23
,
19432
19441
(
2015
).
9.
M.
Lucchini
,
L.
Castiglioni
,
L.
Kasmi
,
P.
Kliuiev
,
A.
Ludwig
,
M.
Greif
,
J.
Osterwalder
,
M.
Hengsberger
,
L.
Gallmann
, and
U.
Keller
, “
Light-matter interaction at surfaces in the spatiotemporal limit of macroscopic models
,”
Phys. Rev. Lett.
115
,
1374011
(
2015
).
10.
M.
Bernardi
,
D.
Vigil-Fowler
,
J.
Lischner
,
J. B.
Neaton
, and
S. G.
Louie
, “
Ab initio study of hot carriers in the first picosecond after sunlight absorption in silicon
,”
Phys. Rev. Lett.
112
,
2574021
(
2014
).
11.
C. L.
Chang
,
C. W.
Cheng
, and
J. K.
Chen
, “
Femtosecond laser-induced periodic surface structures of copper: Experimental and modeling comparison
,”
Appl. Surf. Sci.
469
,
904
910
(
2019
).
12.
G. R. B. E.
Römer
,
A. J.
Huis in’t Veld
,
J.
Meijer
, and
M. N. W.
Groenendijk
, “
On the formation of laser induced self-organizing nanostructures
,”
CIRP Ann. Manuf. Technol.
58
,
201
204
(
2009
).
13.
J.
Bonse
,
S. V.
Kirner
,
S.
Höhm
,
N.
Epperlein
,
D.
Spaltmann
,
A.
Rosenfeld
, and
J.
Krüger
,
Proc. Laser-based Micro- Nanoproc. XI
100920N
,
100920N
(
2017
).
14.
N.
Ackerl
,
P.
Boerner
, and
K.
Wegener
, “
Toward application of hierarchical structures by ultrashort pulsed laser ablation
,”
J. Laser Appl.
31
,
022501
(
2019
).
15.
B.
Dusser
,
Z.
Sagan
,
H.
Soder
,
N.
Faure
,
J. P.
Colombier
,
M.
Jourlin
, and
E.
Audouard
, “
Controlled nanostructures formation by ultrafast laser pulses for color marking
,”
Opt. Express
18
,
2913
2924
(
2010
).
16.
Y.
Yang
,
J.
Yang
,
C.
Liang
, and
H.
Wang
, “
Ultra-broadband enhanced absorption of metal surfaces structured by femtosecond laser pulses
,”
Opt. Express
16
,
11259
11265
(
2008
).
17.
W.
Tang
,
Y.
Zhou
,
H.
Zhu
, and
H.
Yang
, “
The effect of surface texturing on reducing the friction and wear of steel under lubricated sliding contact
,”
Appl. Surf. Sci.
273
,
199
204
(
2013
).
18.
J.
Bonse
,
R.
Koter
,
M.
Hartelt
,
D.
Spaltmann
,
S.
Pentzien
,
S.
Höhm
,
A.
Rosenfeld
, and
J.
Krüger
, “
Tribological performance of femtosecond laser-induced periodic surface structures on titanium and a high toughness bearing steel
,”
Appl. Surf. Sci.
336
,
21
27
(
2015
).
19.
A. Y.
Vorobyev
and
C.
Guo
, “
Femtosecond laser structuring of titanium implants
,”
Appl. Surf. Sci.
253
,
7272
7280
(
2007
).
20.
A.
Rudenko
,
C.
Mauclair
,
F.
Garrelie
,
R.
Stoian
, and
J. P.
Colombier
, “
Light absorption by surface nanoholes and nanobumps
,”
Appl. Surf. Sci.
470
,
228
233
(
2019
).
21.
E. J. Y.
Ling
,
J.
Saïd
,
N.
Brodusch
,
R.
Gauvin
,
P.
Servio
, and
A. M.
Kietzig
, “
Investigating and understanding the effects of multiple femtosecond laser scans on the surface topography of stainless steel 304 and titanium
,”
Appl. Surf. Sci.
353
,
512
521
(
2015
).
22.
S.
Faas
,
U.
Bielke
,
R.
Weber
, and
T.
Graf
, “
Scaling the productivity of laser structuring processes using picosecond laser pulses at average powers of up to 420 W to produce superhydrophobic surfaces on stainless steel AISI 316L
,”
Sci. Rep.
9
,
1933
(
2019
).
23.
R.
Lloyd
,
A.
Abdolvand
,
M.
Schmidt
,
P.
Crouse
,
D.
Whitehead
,
Z.
Liu
, and
L.
Li
, “
Laser-assisted generation of self-assembled microstructures on stainless steel
,”
Appl. Phys. A Mater. Sci. Process.
93
,
117
122
(
2008
).
24.
B.
Liu
,
G.
Jiang
,
W.
Wang
,
X.
Mei
,
K.
Wang
,
J.
Cui
, and
J.
Wang
, “
Porous microstructures induced by picosecond laser scanning irradiation on stainless steel surface
,”
Opt. Lasers Eng.
78
,
55
63
(
2016
).
25.
N.
Ackerl
,
G.
Fisch
,
J.
Auerswald
, and
K.
Wegener
, “
Evolution of microstructures on stainless steel induced by ultra-short pulsed laser ablation
,”
SN Appl. Sci.
2
,
652
(
2020
).
26.
P.
Lorazo
,
L. J.
Lewis
, and
M.
Meunier
, “
Short-pulse laser ablation of solids: From phase explosion to fragmentation
,”
Phys. Rev. Lett.
91
,
225502
(
2003
).
27.
X.
Sedao
,
M. V.
Shugaev
,
C.
Wu
,
T.
Douillard
,
C.
Esnouf
,
C.
Maurice
,
S.
Reynaud
,
F.
Pigeon
,
F.
Garrelie
,
L. V.
Zhigilei
, and
J. P.
Colombier
, “
Growth twinning and generation of high-frequency surface nanostructures in ultrafast laser-induced transient melting and resolidification
,”
ACS Nano
10
,
6995
7007
(
2016
).
28.
R.
Buividas
,
M.
Mikutis
, and
S.
Juodkazis
, “
Surface and bulk structuring of materials by ripples with long and short laser pulses: Recent advances
,”
Prog. Quantum Electron.
38
,
119
156
(
2014
).
29.
P.
Boerner
,
M.
Hajri
,
N.
Ackerl
, and
K.
Wegener
, “
Experimental and theoretical investigation of ultrashort pulsed laser ablation of diamond
,”
J. Laser Appl.
31
,
022202
(
2019
).
30.
S.
He
,
J. J.
Nivas
,
K. K.
Anoop
,
A.
Vecchione
,
M.
Hu
,
R.
Bruzzese
, and
S.
Amoruso
, “
Surface structures induced by ultrashort laser pulses: Formation mechanisms of ripples and grooves
,”
Appl. Surf. Sci.
353
,
1214
1222
(
2015
).
31.
J.
Bonse
,
A.
Rosenfeld
, and
J.
Krüger
, “
On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond-laser pulses
,”
J. Appl. Phys.
106
,
104910
(
2009
).
32.
J. M.
Liu
, “
Simple technique for measurements of pulsed Gaussian-beam spot sizes
,”
Opt. Lett.
7
,
196
198
(
1982
).
33.
B.
Jaeggi
,
B.
Neuenschwander
,
J.
Zuercher
,
T.
Meier
,
M.
Zimmermann
, and
G.
Hennig
, “
High precision and high surface structuring by synchronizing mechanical axes with an ultrashort pulsed laser system in MOPA arrangement
,”
Proc., Laser Appl. Microelec. Optoelec. Manufact. (LAMOM) XVII
8243
,
1082430K1
(
2012
).
34.
M.
Ardron
,
N.
Weston
, and
D.
Hand
, “
A practical technique for the generation of highly uniform LIPSS
,”
Appl. Surf. Sci.
313
,
123
131
(
2014
).
35.
H.
Jiang
,
R. I.
Gomez-Abal
,
P.
Rinke
, and
M.
Scheffler
, “
Electronic band structure of zirconia and hafnia polymorphs from the GW perspective
,”
Phys. Rev. B
81
, 085119 (
2010
).
36.
N.
Ackerl
and
K.
Wegener
, “
Ablation characteristics of alumina and zirconia ceramics on ultra-short pulsed laser machining
,”
J. Laser Micro/Nanoeng.
14
,
168
172
(
2019
).
37.
T.
Heeling
and
K.
Wegener
, “
The effect of multi-beam strategies on selective laser melting of stainless steel 316L
,”
Addit. Manuf.
22
,
334
342
(
2018
).
You do not currently have access to this content.