Laser polishing of metals consists of irradiating the part's surface with a laser beam, thus generating a molten layer that is redistributed and resolidified to create a surface with reduced roughness. However, the process is also characterized by an instantaneous formation of heat-affected zones with consequent microstructural changes that influence the mechanical properties. In order to understand the microstructural evolution during laser polishing of Ti-6Al-4V laser-based powder bed fusion samples, a thermal model is applied in the current study to predict the dimensions of the melted zones and the heat-affected areas. Furthermore, the results obtained through simulations are discussed and compared to the experimental data, thereby establishing the validity of the process models. Finally, the experimental studies also include the evaluation of material hardness and residual stresses after laser polishing.

1.
L.
Chen
,
Y.
He
,
Y.
Yang
,
S.
Niu
, and
H.
Ren
, “
The research status and development trend of additive manufacturing technology
,”
Int. J. Adv. Manuf. Technol.
89
,
3651
3660
(
2017
).
2.
B.
Zhang
,
Y.
Li
, and
Q.
Bai
, “
Defect formation mechanisms in selective laser melting: A review
,”
Chin. J. Mech. Eng.
30
,
515
527
(
2017
).
3.
E.
Wycisk
,
A.
Solbach
,
S.
Siddique
,
D.
Herzog
,
F.
Walther
, and
C.
Emmelmann
, “
Effects of defects in laser additive manufactured Ti-6Al-4V on fatigue properties
,”
Phys. Procedia
56
,
371
378
(
2014
).
4.
J.
Kumstel
and
B.
Kirsch
, “
Polishing titanium- and nickel-based alloys using cw-laser radiation
,”
Phys. Procedia
41
,
362
371
(
2013
).
5.
F.
Zhihao
,
L.
Libin
,
C.
Longfei
, and
G.
Yingchun
, “
Laser polishing of additive manufactured superalloy
,”
Proc. CIRP
71
,
150
154
(
2018
).
6.
C. P.
Ma
,
Y. C.
Guan
, and
W.
Zhou
, “
Laser polishing of additive manufactured Ti alloys
,”
Opt. Laser Eng.
93
,
171
177
(
2017
).
7.
W. J.
Wang
,
K. C.
Yung
,
H. S.
Choy
,
T. Y.
Xiao
, and
Z. X.
Cai
, “
Effects of laser polishing on surface microstructure and corrosion resistance of additive manufactured CoCr alloys
,”
Appl. Surf. Sci.
443
,
167
175
(
2018
).
8.
S.
Marimuthu
,
A.
Triantaphyllou
,
M.
Antar
,
D.
Wimpenny
,
H.
Morton
, and
M.
Beard
, “
Laser polishing of selective laser melted components
,”
Int. J. Machine Tools Manuf.
95
,
97
104
(
2015
).
9.
T. M.
Shao
,
M.
Hua
,
H. Y.
Tam
, and
E. H. M.
Cheung
, “
An approach to modelling of laser polishing of metals
,”
Surf. Coat. Technol.
197
,
77
84
(
2005
).
10.
Q.
Wang
,
J. D.
Morrow
,
C.
Ma
,
N. A.
Duffie
, and
F. E.
Pfefferkorn
, “
Surface prediction model for thermocapillary regime pulsed laser micro polishing of metals
,”
J. Manuf. Processes
20
,
340
348
(
2015
).
11.
W.
Yan
,
Y.
Qian
,
G.
Wenjun
,
S.
Lin
,
W. K.
Liu
,
F.
Lin
, and
G. J.
Wagner
, “
Meso-scale modeling of multiple-layer fabrication process in selective electro beam melting: Inter-layer/track voids formation
,”
Mater. Des.
141
,
210
219
(
2018
).
12.
L.
Parry
,
I. A.
Ashcroft
, and
R. D.
Wildman
, “
Understanding the effect of laser scan strategy on residual stress in selective laser melting through thermo-mechanical simulation
,”
Addit. Manuf.
12
,
1
15
(
2016
).
13.
Y.
Huang
,
L. J.
Yang
,
X. Z.
Du
, and
Y. P.
Yang
, “
Finite element analysis of thermal behaviour of metal powder during selective laser melting
,”
Int. J. Therm. Sci.
104
,
146
157
(
2016
).
14.
M.
Bayat
,
S.
Mohanty
, and
J. H.
Hattel
, “
A systematic investigation of the effects of process parameters on heat and fluid flow and metallurgical conditions during laser-based powder bed fusion of Ti6Al4V alloy
,”
Int. J. Heat Mass Trans.
139
,
213
230
(
2019
).
15.
H.
Wu
,
J.
Ma
,
Q.
Meng
,
M. P.
Jahan
, and
F.
Alavi
, “
Numerical modeling of electrical discharge machining of Ti-6Al-4V
,”
Proc. Manuf.
26
,
359
371
(
2018
).
16.
D.
De Baere
,
M.
Bayat
,
S.
Mohanty
, and
J.
Hattel
, “
Thermo-fluid-metallurgical modelling of the selective laser melting process chain
,”
Proc. CIRP
74
,
87
91
(
2018
).
17.
V.
Bruyere
,
C.
Touvrey
,
P.
Namy
, and
N.
Authier
, “
Multiphysics modeling of pulsed laser welding
,”
J. Laser Appl.
29
,
022403
(
2017
).
18.
G. K.
Williamson
and
W. H.
Hall
, “
X-ray line broadening from filed aluminium and wolfram
,”
Acta Metall.
1
,
22
31
(
1953
).
You do not currently have access to this content.