Recently, two-dimensional (2D) quantum materials and particularly transition metal dichalcogenides have emerged as an exciting class of atomically thin materials that possess extraordinary optoelectronic and photonic properties. The strong light interactions with these materials not only govern their fascinating behavior but can also be used as versatile synthesis and processing tools to precisely tailor their structures and properties. This review highlights the recent progress in laser-based approaches for synthesis and processing of 2D materials that are often challenging via conventional methods. In the synthesis section, the review covers the pulsed laser deposition as the main growth method due to its ability to form and deliver atoms, clusters, or nanoparticles for the growth of 2D materials and thin films with controlled stoichiometry, number of layers, crystallite size, and growth location. It is also shown that the tunable kinetic energy of the atoms in the laser plume is essential for healing defects and doping of 2D layers. In the processing section, the review highlights the application of lasers in crystallization, sintering, direct writing, thinning, doping, and conversion of 2D materials. The spatial and temporal tunability, controlled energy, and power densities of laser beams enable a broad spectrum of applications in the synthesis and processing of 2D quantum materials that are not accessible by other means.

1.
K. S.
Novoselov
,
A. K.
Geim
,
S. V.
Morozov
,
D.
Jiang
,
Y.
Zhang
,
S. V.
Dubonos
,
I. V.
Grigorieva
, and
A. A.
Firsov
, “
Electric field effect in atomically thin carbon films
,”
Science
306
,
666
669
(
2004
).
2.
R.
Mas-Balleste
,
C.
Gomez-Navarro
,
J.
Gomez-Herrero
, and
F.
Zamora
, “
2D materials: To graphene and beyond
,”
Nanoscale
3
,
20
30
(
2011
).
3.
J. D.
Cain
,
E. D.
Hanson
,
F. Y.
Shi
, and
V. P.
Dravid
, “
Emerging opportunities in the two-dimensional chalcogenide systems and architecture
,”
Curr. Opin. Solid State Mater. Sci.
20
,
374
387
(
2016
).
4.
X. F.
Li
,
M. W.
Lin
,
J. H.
Lin
,
B.
Huang
,
A. A.
Puretzky
,
C.
Ma
,
K.
Wang
,
W.
Zhou
,
S. T.
Pantelides
,
M. F.
Chi
,
I.
Kravchenko
,
J.
Fowlkes
,
C. M.
Rouleau
,
D. B.
Geohegan
, and
K.
Xiao
, “
Two-dimensional GaSe/MoSe2 misfit bilayer heterojunctions by van der Waals epitaxy
,”
Sci. Adv.
2
,
e1501882
(
2016
).
5.
N.
Choudhary
,
J.
Park
,
J. Y.
Hwang
, and
W.
Choi
, “
Growth of large-scale and thickness-modulated MoS2 nanosheets
,”
ACS Appl. Mater. Interfaces
6
,
21215
21222
(
2014
).
6.
Y.
Cui
,
B.
Li
,
J. B.
Li
, and
Z. M.
Wei
, “
Chemical vapor deposition growth of two-dimensional heterojunctions
,”
Sci. China Phys. Mech.
61
,
016801
(
2018
).
7.
F. N.
Xia
,
H.
Wang
,
D.
Xiao
,
M.
Dubey
, and
A.
Ramasubramaniam
, “
Two-dimensional material nanophotonics
,”
Nat. Photonics
8
,
899
907
(
2014
).
8.
S.
Lebegue
and
O.
Eriksson
, “
Electronic structure of two-dimensional crystals from ab initio theory
,”
Phys. Rev. B
79
,
115409
(
2009
).
9.
Q. H.
Wang
,
K.
Kalantar-Zadeh
,
A.
Kis
,
J. N.
Coleman
, and
M. S.
Strano
, “
Electronics and optoelectronics of two-dimensional transition metal dichalcogenides
,”
Nat. Nanotechnol.
7
,
699
712
(
2012
).
10.
M.
Chhowalla
,
H. S.
Shin
,
G.
Eda
,
L. J.
Li
,
K. P.
Loh
, and
H.
Zhang
, “
The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets
,”
Nat. Chem.
5
,
263
275
(
2013
).
11.
D.
Jariwala
,
V. K.
Sangwan
,
L. J.
Lauhon
,
T. J.
Marks
, and
M. C.
Hersam
, “
Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides
,”
ACS Nano
8
,
1102
1120
(
2014
).
12.
K. F.
Mak
and
J.
Shan
, “
Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides
,”
Nat. Photonics
10
,
216
226
(
2016
).
13.
S.
Manzeli
,
D.
Ovchinnikov
,
D.
Pasquier
,
O. V.
Yazyev
, and
A.
Kis
, “
2D transition metal dichalcogenides
,”
Nat. Rev. Mater.
2
,
17033
(
2017
).
14.
T. C.
Berkelbach
,
M. S.
Hybertsen
, and
D. R.
Reichman
, “
Theory of neutral and charged excitons in monolayer transition metal dichalcogenides
,”
Phys. Rev. B
88
,
045318
(
2013
).
15.
C. N. R.
Rao
and
U.
Maitra
, “
Inorganic graphene analogs
,”
Annu. Rev. Mater. Res.
45
,
29
62
(
2015
).
16.
G. R.
Bhimanapati
,
Z.
Lin
,
V.
Meunier
,
Y.
Jung
,
J.
Cha
,
S.
Das
,
D.
Xiao
,
Y.
Son
,
M. S.
Strano
,
V. R.
Cooper
,
L. B.
Liang
,
S. G.
Louie
,
E.
Ringe
,
W.
Zhou
,
S. S.
Kim
,
R. R.
Naik
,
B. G.
Sumpter
,
H.
Terrones
,
F. N.
Xia
,
Y. L.
Wang
,
J.
Zhu
,
D.
Akinwande
,
N.
Alem
,
J. A.
Schuller
,
R. E.
Schaak
,
M.
Terrones
, and
J. A.
Robinson
, “
Recent advances in two-dimensional materials beyond graphene
,”
ACS Nano
9
,
11509
11539
(
2015
).
17.
A.
Bera
,
D. V. S.
Muthu
, and
A. K.
Sood
, “
Enhanced Raman and photoluminescence response in monolayer MoS2 due to laser healing of defects
,”
J. Raman Spectrosc.
49
,
100
105
(
2018
).
18.
K. S.
Novoselov
,
A.
Mishchenko
,
A.
Carvalho
, and
A. H. C.
Neto
, “
2D materials and van der Waals heterostructures
,”
Science
353
,
aac9439
(
2016
).
19.
A. K.
Geim
and
I. V.
Grigorieva
, “
Van der Waals heterostructures
,”
Nature
499
,
419
425
(
2013
).
20.
G.
Li
,
Y. Y.
Zhang
,
H.
Guo
,
L.
Huang
,
H. L.
Lu
,
X.
Lin
,
Y. L.
Wang
,
S. X.
Du
, and
H. J.
Gao
, “
Epitaxial growth and physical properties of 2D materials beyond graphene: From monatomic materials to binary compounds
,”
Chem. Soc. Rev.
47
,
6073
6100
(
2018
).
21.
J. X.
Zhu
,
D.
Yang
,
Z. Y.
Yin
,
Q. Y.
Yan
, and
H.
Zhang
, “
Graphene and graphene-based materials for energy storage applications
,”
Small
10
,
3480
3498
(
2014
).
22.
A. D.
Oyedele
,
C. M.
Rouleau
,
D. B.
Geohegan
, and
K.
Xiao
, “
The growth and assembly of organic molecules and inorganic 2D materials on graphene for van der Waals heterostructures
,”
Carbon
131
,
246
257
(
2018
).
23.
A. J.
Mannix
,
B.
Kiraly
,
M. C.
Hersam
, and
N. P.
Guisinger
, “
Synthesis and chemistry of elemental 2D materials
,”
Nat. Rev. Chem.
1
,
0014
(
2017
).
24.
A. J.
Mannix
,
X. F.
Zhou
,
B.
Kiraly
,
J. D.
Wood
,
D.
Alducin
,
B. D.
Myers
,
X. L.
Liu
,
B. L.
Fisher
,
U.
Santiago
,
J. R.
Guest
,
M. J.
Yacaman
,
A.
Ponce
,
A. R.
Oganov
,
M. C.
Hersam
, and
N. P.
Guisinger
, “
Synthesis of borophenes: Anisotropic, two-dimensional boron polymorphs
,”
Science
350
,
1513
1516
(
2015
).
25.
F.
Wang
,
Z. X.
Wang
,
Q. S.
Wang
,
F. M.
Wang
,
L.
Yin
,
K.
Xu
,
Y.
Huang
, and
J.
He
, “
Synthesis, properties and applications of 2D non-graphene materials
,”
Nanotechnology
26
,
292001
(
2015
).
26.
X. S.
Li
,
W. W.
Cai
,
J. H.
An
,
S.
Kim
,
J.
Nah
,
D. X.
Yang
,
R.
Piner
,
A.
Velamakanni
,
I.
Jung
,
E.
Tutuc
,
S. K.
Banerjee
,
L.
Colombo
, and
R. S.
Ruoff
, “
Large-area synthesis of high-quality and uniform graphene films on copper foils
,”
Science
324
,
1312
1314
(
2009
).
27.
Z.
Lin
,
A.
McCreary
,
N.
Briggs
,
S.
Subramanian
,
K. H.
Zhang
,
Y. F.
Sun
,
X. F.
Li
,
N. J.
Borys
,
H. T.
Yuan
,
S. K.
Fullerton-Shirey
,
A.
Chernikov
,
H.
Zhao
,
S.
McDonnell
,
A. M.
Lindenberg
,
K.
Xiao
,
B. J.
LeRoy
,
M.
Drndic
,
J. C. M.
Hwang
,
J.
Park
,
M.
Chhowalla
,
R. E.
Schaak
,
A.
Javey
,
M. C.
Hersam
,
J.
Robinson
, and
M.
Terrones
, “
2D materials advances: From large scale synthesis and controlled heterostructures to improved characterization techniques, defects and applications
,”
2D Mater.
3
,
042001
(
2016
).
28.
H.
Liu
,
Y. C.
Du
,
Y. X.
Deng
, and
P. D.
Ye
, “
Semiconducting black phosphorus: Synthesis, transport properties and electronic applications
,”
Chem. Soc. Rev.
44
,
2732
2743
(
2015
).
29.
C. L.
Tan
,
X. H.
Cao
,
X. J.
Wu
,
Q. Y.
He
,
J.
Yang
,
X.
Zhang
,
J. Z.
Chen
,
W.
Zhao
,
S. K.
Han
,
G. H.
Nam
,
M.
Sindoro
, and
H.
Zhang
, “
Recent advances in ultrathin two-dimensional nanomaterials
,”
Chem. Rev.
117
,
6225
6331
(
2017
).
30.
M.
Garcia-Hernandez
and
J.
Coleman
, “
Materials science of graphene: A flagship perspective
,”
2D Mater.
3
,
010401
(
2016
).
31.
K. R.
Paton
,
E.
Varrla
,
C.
Backes
,
R. J.
Smith
,
U.
Khan
,
A.
O’Neill
,
C.
Boland
,
M.
Lotya
,
O. M.
Istrate
,
P.
King
,
T.
Higgins
,
S.
Barwich
,
P.
May
,
P.
Puczkarski
,
I.
Ahmed
,
M.
Moebius
,
H.
Pettersson
,
E.
Long
,
J.
Coelho
,
S. E.
O’Brien
,
E. K.
McGuire
,
B. M.
Sanchez
,
G. S.
Duesberg
,
N.
McEvoy
,
T. J.
Pennycook
,
C.
Downing
,
A.
Crossley
,
V.
Nicolosi
, and
J. N.
Coleman
, “
Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids
,”
Nat. Mater.
13
,
624
630
(
2014
).
32.
D.
Wang
,
Y. Q.
Wang
,
X. D.
Chen
,
Y. K.
Zhu
,
K.
Zhan
,
H. B.
Cheng
, and
X. Y.
Wang
, “
Layer-by-layer thinning of two-dimensional MoS2 films by using a focused ion beam
,”
Nanoscale
8
,
4107
4112
(
2016
).
33.
J.
Wu
,
H.
Li
,
Z. Y.
Yin
,
H.
Li
,
J. Q.
Liu
,
X. H.
Cao
,
Q.
Zhang
, and
H.
Zhang
, “
Layer thinning and etching of mechanically exfoliated MoS2 nanosheets by thermal annealing in air
,”
Small
9
,
3314
3319
(
2013
).
34.
D.
Voiry
,
A.
Mohite
, and
M.
Chhowalla
, “
Phase engineering of transition metal dichalcogenides
,”
Chem. Soc. Rev.
44
,
2702
2712
(
2015
).
35.
H. J.
Conley
,
B.
Wang
,
J. I.
Ziegler
,
R. F.
Haglund
,
S. T.
Pantelides
, and
K. I.
Bolotin
, “
Bandgap engineering of strained monolayer and bilayer MoS2
,”
Nano Lett.
13
,
3626
3630
(
2013
).
36.
A.
Raja
,
A.
Chaves
,
J.
Yu
,
G.
Arefe
,
H. M.
Hill
,
A. F.
Rigosi
,
T. C.
Berkelbach
,
P.
Nagler
,
C.
Schuller
,
T.
Korn
,
C.
Nuckolls
,
J.
Hone
,
L. E.
Brus
,
T. F.
Heinz
,
D. R.
Reichman
, and
A.
Chernikov
, “
Coulomb engineering of the bandgap and excitons in two-dimensional materials
,”
Nat. Commun.
8
,
15251
(
2017
).
37.
M.
Mahjouri-Samani
,
L. B.
Liang
,
A.
Oyedele
,
Y. S.
Kim
,
M. K.
Tian
,
N.
Cross
,
K.
Wang
,
M. W.
Lin
,
A.
Boulesbaa
,
C. M.
Rouleau
,
A. A.
Puretzky
,
K.
Xiao
,
M.
Yoon
,
G.
Eres
,
G.
Duscher
,
B. G.
Sumpter
, and
D. B.
Geohegan
, “
Tailoring vacancies far beyond intrinsic levels changes the carrier type and optical response in monolayer MoSe2-x crystals
,”
Nano Lett.
16
,
5213
5220
(
2016
).
38.
F.
Bonaccorso
,
L.
Colombo
,
G. H.
Yu
,
M.
Stoller
,
V.
Tozzini
,
A. C.
Ferrari
,
R. S.
Ruoff
, and
V.
Pellegrini
, “
Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage
,”
Science
347
,
1246501
(
2015
).
39.
X. Y.
Zhang
,
L. L.
Hou
,
A.
Ciesielski
, and
P.
Samori
, “
2D materials beyond graphene for high-performance energy storage applications
,”
Adv. Energy Mater.
6
,
1600671
(
2016
).
40.
R.
Ramachandran
,
V.
Mani
,
S. M.
Chen
,
R.
Saraswathi
, and
B. S.
Lou
, “
Recent trends in graphene based electrode materials for energy storage devices and sensors applications
,”
Int. J. Electrochem. Sci.
8
,
11680
11694
(
2013
).
41.
E.
Pomerantseva
and
Y.
Gogotsi
, “
Two-dimensional heterostructures for energy storage
,”
Nat. Energy
2
,
17089
(
2017
).
42.
C. L.
Tan
and
H.
Zhang
, “
Two-dimensional transition metal dichalcogenide nanosheet-based composites
,”
Chem. Soc. Rev.
44
,
2713
2731
(
2015
).
43.
K. S.
Novoselov
,
D.
Jiang
,
F.
Schedin
,
T. J.
Booth
,
V. V.
Khotkevich
,
S. V.
Morozov
, and
A. K.
Geim
, “
Two-dimensional atomic crystals
,”
Proc. Natl. Acad. Sci. U.S.A.
102
,
10451
10453
(
2005
).
44.
V.
Nicolosi
,
M.
Chhowalla
,
M. G.
Kanatzidis
,
M. S.
Strano
, and
J. N.
Coleman
, “
Liquid exfoliation of layered materials
,”
Science
340
,
1226419
(
2013
).
45.
S.
Vishwanath
,
X. Y.
Liu
,
S.
Rouvimov
,
P. C.
Mende
,
A.
Azcatl
,
S.
McDonnell
,
R. M.
Wallace
,
R. M.
Feenstra
,
J. K.
Furdyna
,
D.
Jena
, and
H. G.
Xing
, “
Comprehensive structural and optical characterization of MBE grown MoSe2 on graphite, CaF2 and graphene
,”
2D Mater.
2
,
024007
(
2015
).
46.
L.
Jiao
,
H. J.
Liu
,
J. L.
Chen
,
Y.
Yi
,
W. G.
Chen
,
Y.
Cai
,
J. N.
Wang
,
X. Q.
Dai
,
N.
Wang
,
W. K.
Ho
, and
M. H.
Xie
, “
Molecular-beam epitaxy of monolayer MoSe2: Growth characteristics and domain boundary formation
,”
New J. Phys.
17
,
053023
(
2015
).
47.
S. M.
Poh
,
S. J. R.
Tan
,
H.
Wang
,
P.
Song
,
I. H.
Abidi
,
X.
Zhao
,
J. D.
Dan
,
J. S.
Chen
,
Z. T.
Luo
,
S. J.
Pennycook
,
A. H. C.
Neto
, and
K. P.
Loh
, “
Molecular-beam epitaxy of two-dimensional In2Se3 and its giant electroresistance switching in ferroresistive memory junction
,”
Nano Lett.
18
,
6340
6346
(
2018
).
48.
K.
Kang
,
S. E.
Xie
,
L. J.
Huang
,
Y. M.
Han
,
P. Y.
Huang
,
K. F.
Mak
,
C. J.
Kim
,
D.
Muller
, and
J.
Park
, “
High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity
,”
Nature
520
,
656
660
(
2015
).
49.
Y.
Zhang
,
L. Y.
Zhang
, and
C. W.
Zhou
, “
Review of chemical vapor deposition of graphene and related applications
,”
Acc. Chem. Res.
46
,
2329
2339
(
2013
).
50.
H. F.
Liu
,
S. L.
Wong
, and
D. Z.
Chi
, “
CVD growth of MoS2-based two-dimensional materials
,”
Chem. Vapor Depos.
21
,
241
259
(
2015
).
51.
J. C.
Shaw
,
H. L.
Zhou
,
Y.
Chen
,
N. O.
Weiss
,
Y.
Liu
,
Y.
Huang
, and
X. F.
Duan
, “
Chemical vapor deposition growth of monolayer MoSe2 nanosheets
,”
Nano Res.
7
,
511
517
(
2014
).
52.
Z.
Ahmadi
,
B.
Yakupoglu
,
N.
Azam
,
S.
Elafandi
, and
M.
Mahjouri-Samani
, “
Self-limiting laser crystallization and direct writing of 2D materials
,”
Int. J. Extreme Manuf.
1
,
015001
(
2019
).
53.
I. A.
Akimov
,
A. A.
Sirenko
,
A. M.
Clark
,
J. H.
Hao
, and
X. X.
Xi
, “
Electric-field-induced soft-mode hardening in SrTiO3 films
,”
Phys. Rev. Lett.
84
,
4625
4628
(
2000
).
54.
J. H.
Hao
,
Y.
Zhang
, and
X. H.
Wei
, “
Electric-induced enhancement and modulation of upconversion photoluminescence in epitaxial BaTiO3:Yb/Er thin films
,”
Angew Chem. Int. Ed.
50
,
6876
6880
(
2011
).
55.
Y.
Zhang
and
J. H.
Hao
, “
Color-tunable upconversion luminescence of Yb3+, Er3+, and Tm3+ tri-doped ferroelectric BaTiO3 materials
,”
J. Appl. Phys.
113
,
184112
(
2013
).
56.
D. H.
Lowndes
,
D. B.
Geohegan
,
A. A.
Puretzky
,
D. P.
Norton
, and
C. M.
Rouleau
, “
Synthesis of novel thin-film materials by pulsed laser deposition
,”
Science
273
,
898
903
(
1996
).
57.
P. R.
Willmott
and
J. R.
Huber
, “
Pulsed laser vaporization and deposition
,”
Rev. Mod. Phys.
72
,
315
328
(
2000
).
58.
J. H.
Hao
,
J.
Gao
,
Z.
Wang
, and
D. P.
Yu
, “
Interface structure and phase of epitaxial SrTiO3 (110) thin films grown directly on silicon
,”
Appl. Phys. Lett.
87
,
131908
(
2005
).
59.
K.
Nomura
,
H.
Ohta
,
A.
Takagi
,
T.
Kamiya
,
M.
Hirano
, and
H.
Hosono
, “
Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors
,”
Nature
432
,
488
492
(
2004
).
60.
H. L.
Spindler
,
R. M.
Gilgenbach
, and
J. S.
Lash
, “
Effects of laser-ablation target damage on particulate production investigated by laser scattering with deposited thin film and target analysis
,”
Appl. Phys. Lett.
68
,
3245
3247
(
1996
).
61.
B.
Holzapfel
,
B.
Roas
,
L.
Schultz
,
P.
Bauer
, and
G.
Saemannischenko
, “
Off-axis laser deposition of YBa2Cu3O7−δ thin-films
,”
Appl. Phys. Lett.
61
,
3178
3180
(
1992
).
62.
Z.
Trajanovic
,
S.
Choopun
,
R. P.
Sharma
, and
T.
Venkatesan
, “
Stoichiometry and thickness variation of YBa2Cu3O7−x in pulsed laser deposition with a shadow mask
,”
Appl. Phys. Lett.
70
,
3461
3463
(
1997
).
63.
E.
Cappelli
,
S.
Iacobucci
,
C.
Scilletta
,
R.
Flammini
,
S.
Orlando
,
G.
Mattei
,
P.
Ascarelli
,
F.
Borgatti
,
A.
Giglia
,
N.
Mahne
, and
S.
Nannarone
, “
Orientation tendency of PLD carbon films as a function of substrate temperature: A NEXAFS study
,”
Diam. Relat. Mater.
14
,
959
964
(
2005
).
64.
C.
Scilletta
,
M.
Servidori
,
S.
Orlando
,
E.
Cappelli
,
L.
Barba
, and
P.
Ascarelli
, “
Influence of substrate temperature and atmosphere on nano-graphene formation and texturing of pulsed Nd:YAG laser-deposited carbon films
,”
Appl. Surf. Sci.
252
,
4877
4881
(
2006
).
65.
A. T. T.
Koh
,
Y. M.
Foong
, and
D. H. C.
Chua
, “
Comparison of the mechanism of low defect few-layer graphene fabricated on different metals by pulsed laser deposition
,”
Diam. Relat. Mater.
25
,
98
102
(
2012
).
66.
A. T. T.
Koh
,
Y. M.
Foong
, and
D. H. C.
Chua
, “
Cooling rate and energy dependence of pulsed laser fabricated graphene on nickel at reduced temperature
,”
Appl. Phys. Lett.
97
,
114102
(
2010
).
67.
M.
Mahjouri-Samani
,
R.
Gresback
,
M. K.
Tian
,
K.
Wang
,
A. A.
Puretzky
,
C. M.
Rouleau
,
G.
Eres
,
I. N.
Ivanov
,
K.
Xiao
,
M. A.
McGuire
,
G.
Duscher
, and
D. B.
Geohegan
, “
Pulsed laser deposition of photoresponsive two-dimensional GaSe nanosheet networks
,”
Adv. Funct. Mater.
24
,
6365
6371
(
2014
).
68.
F.
Ullah
,
V.
Senthilkumar
,
S. H.
Kim
,
C. T.
Le
,
H.
Rock
,
D. Y.
Lee
,
S.
Park
,
A. I.
Ali
, and
Y. S.
Kim
, “
Continuous large area few layers MoS2 films by pulsed laser deposition and effect of annealing in sulfur environment
,”
J. Nanosci. Nanotechnol.
16
,
10284
10289
(
2016
).
69.
A.
Barvat
,
N.
Prakash
,
B.
Satpati
,
S. S.
Singha
,
G.
Kumar
,
D. K.
Singh
,
A.
Dogra
,
S. P.
Khanna
,
A.
Singha
, and
P.
Pal
, “
Emerging photoluminescence from bilayer large-area 2D MoS2 films grown by pulsed laser deposition on different substrates
,”
J. Appl. Phys.
122
,
015304
(
2017
).
70.
C. R.
Serrao
,
A. M.
Diamond
,
S. L.
Hsu
,
L.
You
,
S.
Gadgil
,
J.
Clarkson
,
C.
Carraro
,
R.
Maboudian
,
C. M.
Hu
, and
S.
Salahuddin
, “
Highly crystalline MoS2 thin films grown by pulsed laser deposition
,”
Appl. Phys. Lett.
106
,
052101
(
2015
).
71.
M. I.
Serna
,
S. H.
Yoo
,
S.
Moreno
,
Y.
Xi
,
J. P.
Oviedo
,
H.
Choi
,
H. N.
Alshareef
,
M. J.
Kim
,
M.
Minary-Jolandan
, and
M. A.
Quevedo-Lopez
, “
Large-area deposition of MoS2 by pulsed laser deposition with in situ thickness control
,”
ACS Nano
10
,
6054
6061
(
2016
).
72.
Y. T.
Ho
,
C. H.
Ma
,
T. T.
Luong
,
L. L.
Wei
,
T. C.
Yen
,
W. T.
Hsu
,
W. H.
Chang
,
Y. C.
Chu
,
Y. Y.
Tu
,
K. P.
Pande
, and
E. Y.
Chang
, “
Layered MoS2 grown on c-sapphire by pulsed laser deposition
,”
Phys. Status Solidi R
9
,
187
191
(
2015
).
73.
M.
Gao
,
M. H.
Zhang
,
W.
Niu
,
Y. Q.
Chen
,
M.
Gu
,
H. Y.
Wang
,
F. Q.
Song
,
P.
Wang
,
S. C.
Yan
,
F. Q.
Wang
,
X. R.
Wang
,
X. F.
Wang
,
Y. B.
Xu
, and
R.
Zhang
, “
Tuning the transport behavior of centimeter-scale WTe2 ultrathin films fabricated by pulsed laser deposition
,”
Appl. Phys. Lett.
111
,
031906
(
2017
).
74.
M.
Mahjouri-Samani
,
M.
Tian
,
K.
Wang
,
A.
Boulesbaa
,
C. M.
Rouleau
,
A. A.
Puretzky
,
M. A.
McGuire
,
B. R.
Srijanto
,
K.
Xiao
,
G.
Eres
,
G.
Duscher
, and
D. B.
Geohegan
, “
Digital transfer growth of patterned 2D metal chalcogenides by confined nanoparticle evaporation
,”
ACS Nano
8
,
11567
11575
(
2014
).
75.
Y. L.
Zhang
,
L.
Guo
,
S.
Wei
,
Y. Y.
He
,
H.
Xia
,
Q. D.
Chen
,
H. B.
Sun
, and
F. S.
Xiao
, “
Direct imprinting of microcircuits on graphene oxides film by femtosecond laser reduction
,”
Nano Today
5
,
15
20
(
2010
).
76.
W.
Xiong
,
Y. S.
Zhou
,
W. J.
Hou
,
L. J.
Jiang
,
Y.
Gao
,
L. S.
Fan
,
L.
Jiang
,
J. F.
Silvain
, and
Y. F.
Lu
, “
Direct writing of graphene patterns on insulating substrates under ambient conditions
,”
Sci. Rep.
4
,
4892
(
2014
).
77.
J. B.
Park
,
W.
Xiong
,
Y.
Gao
,
M.
Qian
,
Z. Q.
Xie
,
M.
Mitchell
,
Y. S.
Zhou
,
G. H.
Han
,
L.
Jiang
, and
Y. F.
Lu
, “
Fast growth of graphene patterns by laser direct writing
,”
Appl. Phys. Lett.
98
,
123109
(
2011
).
78.
L. J.
Cote
,
R.
Cruz-Silva
, and
J. X.
Huang
, “
Flash reduction and patterning of graphite oxide and its polymer composite
,”
J. Am. Chem. Soc.
131
,
11027
11032
(
2009
).
79.
S. S.
Gilje
,
S.
Dubin
,
A.
Badakhshan
,
J.
Farrar
,
S. A.
Danczyk
, and
R. B.
Kaner
, “
Photothermal deoxygenation of graphene oxide for patterning and distributed ignition applications
,”
Abstr. Pap. Am. Chem. Soc.
22
,
419
423
(
2010
).
80.
M.
Koinuma
,
C.
Ogata
,
Y.
Kamei
,
K.
Hatakeyama
,
H.
Tateishi
,
Y.
Watanabe
,
T.
Taniguchi
,
K.
Gezuhara
,
S.
Hayami
,
A.
Funatsu
,
M.
Sakata
,
Y.
Kuwahara
,
S.
Kurihara
, and
Y.
Matsumoto
, “
Photochemical engineering of graphene oxide nanosheets
,”
J. Phys. Chem. C
116
,
19822
19827
(
2012
).
81.
A. L.
Stroyuk
,
N. S.
Andryushina
,
N. D.
Shcherban
,
V. G.
Il’in
,
V. S.
Efanov
,
I. B.
Yanchuk
,
S. Y.
Kuchmii
, and
V. D.
Pokhodenko
, “
Photochemical reduction of graphene oxide in colloidal solution
,”
Theor. Exp. Chem.
48
,
2
13
(
2012
).
82.
Y. L.
Zhang
,
L.
Guo
,
H.
Xia
,
Q. D.
Chen
,
J.
Feng
, and
H. B.
Sun
, “
Photoreduction of graphene oxides: Methods, properties, and applications
,”
Adv. Opt. Mater.
2
,
10
28
(
2014
).
83.
M.
Sajjad
,
H. X.
Zhang
,
X. Y.
Peng
, and
P. X.
Feng
, “
Effect of substrate temperature in the synthesis of BN nanostructures
,”
Phys. Scr.
83
,
065601
(
2011
).
84.
P. X.
Feng
and
M.
Sajjad
, “
Few-atomic-layer boron nitride sheets syntheses and applications for semiconductor diodes
,”
Mater. Lett.
89
,
206
208
(
2012
).
85.
P.
Feng
,
M.
Sajjad
,
E. Y.
Li
,
H. X.
Zhang
,
J.
Chu
,
A.
Aldalbahi
, and
G.
Morell
, “
Fringe structures and tunable bandgap width of 2D boron nitride nanosheets
,”
Beilstein J. Nanotechnol.
5
,
1186
1192
(
2014
).
86.
M.
Sajjad
,
M.
Ahmadi
,
M. J. F.
Guinel
,
Y.
Lin
, and
P.
Feng
, “
Large scale synthesis of single-crystal and polycrystalline boron nitride nanosheets
,”
J. Mater. Sci.
48
,
2543
2549
(
2013
).
87.
A.
Aldalbahi
,
A. F.
Zhou
, and
P.
Feng
, “
Variations in crystalline structures and electrical properties of single crystalline boron nitride nanosheets
,”
Sci. Rep.
5
,
16703
(
2015
).
88.
M. E.
McConney
,
N. R.
Glavin
,
A. T.
Juhl
,
M. H.
Check
,
M. F.
Durstock
,
A. A.
Voevodin
,
T. E.
Shelton
,
J. E.
Bultman
,
J.
Hu
,
M. L.
Jespersen
,
M. K.
Gupta
,
R. D.
Naguy
,
J. G.
Colborn
,
A.
Haque
,
P. T.
Hagerty
,
R. E.
Stevenson
, and
C.
Muratore
, “
Direct synthesis of ultra-thin large area transition metal dichalcogenides and their heterostructures on stretchable polymer surfaces
,”
J. Mater. Res.
31
,
967
974
(
2016
).
89.
H.
Kwon
,
W.
Choi
,
D.
Lee
,
Y.
Lee
,
J.
Kwon
,
B.
Yoo
,
C. P.
Grigoropoulos
, and
S.
Kim
, “
Selective and localized laser annealing effect for high-performance flexible multilayer MoS2 thin-film transistors
,”
Nano Res.
7
,
1137
1145
(
2014
).
90.
B.
Sirota
,
N.
Glavin
, and
A. A.
Voevodin
, “
Room temperature magnetron sputtering and laser annealing of ultrathin MoS2 for flexible transistors
,”
Vacuum
160
,
133
138
(
2019
).
91.
Z. H.
Hu
,
Z. T.
Wu
,
C.
Han
,
J.
He
,
Z. H.
Ni
, and
W.
Chen
, “
Two-dimensional transition metal dichalcogenides: Interface and defect engineering
,”
Chem. Soc. Rev.
47
,
3100
3128
(
2018
).
92.
J. P.
Lu
,
A.
Carvalho
,
X. K.
Chan
,
H. W.
Liu
,
B.
Liu
,
E. S.
Tok
,
K. P.
Loh
,
A. H. C.
Neto
, and
C. H.
Sow
, “
Atomic healing of defects in transition metal dichalcogenides
,”
Nano Lett.
15
,
3524
3532
(
2015
).
93.
M.
Mahjouri-Samani
,
M. W.
Lin
,
K.
Wang
,
A. R.
Lupini
,
J.
Lee
,
L.
Basile
,
A.
Boulesbaa
,
C. M.
Rouleau
,
A. A.
Puretzky
,
I. N.
Ivanov
,
K.
Xiao
,
M.
Yoon
, and
D. B.
Geohegan
, “
Patterned arrays of lateral heterojunctions within monolayer two-dimensional semiconductors
,”
Nat. Commun.
6
,
7749
(
2015
).
94.
E.
Kim
,
C.
Ko
,
K.
Kim
,
Y. B.
Chen
,
J.
Suh
,
S. G.
Ryu
,
K. D.
Wu
,
X. Q.
Meng
,
A.
Suslu
,
S.
Tongay
,
J. Q.
Wu
, and
C. P.
Grigoropoulos
, “
Site selective doping of ultrathin metal dichalcogenides by laser-assisted reaction
,”
Adv. Mater.
28
,
341
346
(
2016
).
95.
S.
Kim
,
J. H.
Kim
,
D.
Kim
,
G.
Hwang
,
J.
Baik
,
H.
Yang
, and
S.
Cho
, “
Post-patterning of an electronic homojunction in atomically thin monoclinic MoTe2
,”
2D Mater.
4
,
024004
(
2017
).
96.
L.
Hu
,
X.
Shan
,
Y.
Wu
,
J.
Zhao
, and
X.
Lu
, “
Laser thinning and patterning of MoS2 with layer-by-layer precision
,”
Sci. Rep.
7
,
15538
(
2017
).
97.
M. A.
Bissett
,
A. G.
Hattle
,
A. J.
Marsden
,
I. A.
Kinloch
, and
R. A. W.
Dryfe
, “
Enhanced photoluminescence of solution-exfoliated transition metal dichalcogenides by laser etching
,”
ACS Omega
2
,
738
745
(
2017
).
98.
J.
Nozaki
,
M.
Fukumura
,
T.
Aoki
,
Y.
Maniwa
,
Y.
Yomogida
, and
K.
Yanagi
, “
Manipulation of local optical properties and structures in molybdenum-disulfide monolayers using electric field-assisted nearfield techniques
,”
Sci. Rep.
7
,
46004
(
2017
).
99.
K. A. N.
Duerloo
,
Y.
Li
, and
E. J.
Reed
, “
Structural phase transitions in two-dimensional Mo- and W-dichalcogenide monolayers
,”
Nat. Commun.
5
,
4214
(
2014
).
100.
S.
Cho
,
S.
Kim
,
J. H.
Kim
,
J.
Zhao
,
J.
Seok
,
D. H.
Keum
,
J.
Baik
,
D. H.
Choe
,
K. J.
Chang
,
K.
Suenaga
,
S. W.
Kim
,
Y. H.
Lee
, and
H.
Yang
, “
Phase patterning for ohmic homojunction contact in MoTe2
,”
Science
349
,
625
628
(
2015
).
You do not currently have access to this content.