Selective laser melting (SLM) is an additive manufacturing technology that uses a laser beam to melt powder materials together layer by layer for solid part fabrication. Due to its superior rapid prototyping capability of three-dimensional structures, SLM has been used for widespread industrial applications including aerospace, automotive, electronics, and biomedical devices. As a state-of-the-art technology, ongoing investigations are being conducted to improve the efficiency and effectiveness of SLM. In particular, understanding of microstructure evolution during SLM is essential to achieve improved process control and ensure the performance of laser-fabricated components. This paper is to review the recent research and development progress in SLM of metallic materials with a focus on the process–microstructure relationship. The grain growth and porosity evolution as affected by laser processing parameters in the SLM process are discussed. Phase transformation in SLM of steel and titanium alloys is studied. The formation of precipitates in SLM of titanium, nickel, and aluminum/magnesium alloys is reviewed. The balling phenomenon and cracking behaviors during SLM are discussed. In addition, the recent development of computational modeling of microstructure evolution during SLM is investigated.

1.
K.-H.
Leitz
,
P.
Singer
,
A.
Plankensteiner
,
B.
Tabernig
,
H.
Kestler
, and
L.
Sigl
, “
Multi-physical simulation of selective laser melting
,”
Met. Powder Rep.
72
,
331
338
(
2017
).
2.
M.
Yakout
,
M.
Elbestawi
, and
S. C.
Veldhuis
, “
On the characterization of stainless steel 316L parts produced by selective laser melting
,”
Int. J. Adv. Manuf. Technol.
95
,
1953
1974
(
2017
).
3.
Y.
Song
,
Y.
Yan
,
R.
Zhang
,
D.
Xu
, and
F.
Wang
, “
Manufacture of the die of an automobile deck part based on rapid prototyping and rapid tooling technology
,”
J. Mater. Process. Technol.
120
,
237
242
(
2002
).
4.
W. W.
Wits
,
S. J.
Weitkamp
, and
J.
van Es
, “
Metal additive manufacturing of a high-pressure micro-pump
,”
Procedia CIRP
7
,
252
257
(
2013
).
5.
S.
Hou
,
S.
Qi
,
D. A.
Hutt
,
J. R.
Tyrer
,
M.
Mu
, and
Z.
Zhou
, “
Three dimensional printed electronic devices realised by selective laser melting of copper/high-density-polyethylene powder mixtures
,”
J. Mater. Process. Technol.
254
,
310
324
(
2018
).
6.
M.
Wong
,
I.
Owen
, and
C. J.
Sutcliffe
, “
Pressure loss and heat transfer through heat sinks produced by selective laser melting
,”
Heat Transf. Eng.
30
,
1068
1076
(
2009
).
7.
M.
Zenou
,
O.
Ermak
,
A.
Saar
, and
Z.
Kotler
, “
Laser sintering of copper nanoparticles
,”
J. Phys. D Appl. Phys.
47
,
025501
(
2013
).
8.
T.
Hayashi
,
K.
Maekawa
,
M.
Tamura
, and
K.
Hanyu
, “
Selective laser sintering method using titanium powder sheet toward fabrication of porous bone substitutes
,”
JSME Int. J. Ser. A Solid Mech. Mater. Eng.
48
,
369
375
(
2005
).
9.
M. A.
Stoodley
,
J. R.
Abbott
, and
D. A.
Simpson
, “
Titanium cranioplasty using 3-D computer modelling of skull defects
,”
J. Clin. Neurosci.
3
,
149
155
(
1996
).
10.
D. A.
Hollander
,
M.
Von Walter
,
T.
Wirtz
,
R.
Sellei
,
B.
Schmidt-Rohlfing
,
O.
Paar
, and
H.-J.
Erli
, “
Structural, mechanical and in vitro characterization of individually structured Ti–6Al–4V produced by direct laser forming
,”
Biomaterials
27
,
955
963
(
2006
).
11.
M.
Kanazawa
,
M.
Iwaki
,
S.
Minakuchi
, and
N.
Nomura
, “
Fabrication of titanium alloy frameworks for complete dentures by selective laser melting
,”
J. Prosthet. Dent.
112
,
1441
1447
(
2014
).
12.
V.
Beal
,
P.
Erasenthiran
,
C. H.
Ahrens
, and
P.
Dickens
, “
Evaluating the use of functionally graded materials inserts produced by selective laser melting on the injection moulding of plastics parts
,”
Proc. Inst. Mech. Eng. B J. Eng. Manuf.
221
,
945
954
(
2007
).
13.
M.
Erdal
,
S.
Dag
,
Y.
Jande
, and
C.
Tekin
, “
Manufacturing of functionally graded porous products by selective laser sintering
,”
Mater. Sci. Forum
631–632
,
253
258
(
2010
).
14.
Z.
Liu
,
D.
Zhang
,
S.
Sing
,
C.
Chua
, and
L.
Loh
, “
Interfacial characterization of SLM parts in multi-material processing: Metallurgical diffusion between 316L stainless steel and C18400 copper alloy
,”
Mater. Charact.
94
,
116
125
(
2014
).
15.
D.
Lin
,
C. R.
Liu
, and
G. J.
Cheng
, “
Single-layer graphene oxide reinforced metal matrix composites by laser sintering: Microstructure and mechanical property enhancement
,”
Acta Mater.
80
,
183
193
(
2014
).
16.
D.
Lin
,
C.
Ye
,
Y.
Liao
,
S.
Suslov
,
R.
Liu
, and
G. J.
Cheng
, “
Mechanism of fatigue performance enhancement in a laser sintered superhard nanoparticles reinforced nanocomposite followed by laser shock peening
,”
J. Appl. Phys.
113
,
133509
(
2013
).
17.
D.
Lin
,
C.
Richard Liu
, and
G. J.
Cheng
, “
Laser sintering of separated and uniformly distributed multiwall carbon nanotubes integrated iron nanocomposites
,”
J. Appl. Phys.
115
,
113513
(
2014
).
18.
D.
Gu
,
Y.-C.
Hagedorn
,
W.
Meiners
,
G.
Meng
,
R. J. S.
Batista
,
K.
Wissenbach
, and
R.
Poprawe
, “
Densification behavior, microstructure evolution, and wear performance of selective laser melting processed commercially pure titanium
,”
Acta Mater.
60
,
3849
3860
(
2012
).
19.
E. O. t.
Olakanmi
,
R.
Cochrane
, and
K.
Dalgarno
, “
A review on selective laser sintering/melting (SLS/SLM) of aluminium alloy powders: Processing, microstructure, and properties
,”
Prog. Mater. Sci.
74
,
401
477
(
2015
).
20.
P.
Yuan
and
D.
Gu
, “
Molten pool behaviour and its physical mechanism during selective laser melting of TiC/AlSi10Mg nanocomposites: Simulation and experiments
,”
J. Phys. D Appl. Phys.
48
,
035303
(
2015
).
21.
P.
Clementz
and
J.-N.
Pernin
, “
Homogenization modeling of capillary forces in selective laser sintering
,”
Int. J. Eng. Sci.
41
,
2305
2333
(
2003
).
22.
H.
Shipley
,
D.
McDonnell
,
M.
Culleton
,
R.
Lupoi
,
G.
O’Donnell
, and
D.
Trimble
, “
Optimisation of process parameters to address fundamental challenges during selective laser melting of Ti-6Al-4V: A review
,”
Int. J. Mach. Tools Manuf.
128
,
1
20
(
2018
).
23.
Z. X.
Khoo
,
Y.
Liu
,
J.
An
,
C. K.
Chua
,
Y. F.
Shen
, and
C. N.
Kuo
, “
A review of selective laser melted NiTi shape memory alloy
,”
Materials
11
,
pii: E519
(
2018
).
24.
X.
Wang
,
X.
Gong
, and
K.
Chou
, “
Review on powder-bed laser additive manufacturing of Inconel 718 parts
,”
Proc. Inst. Mech. Eng. Part B J. Eng. Manuf.
231
,
1890
1903
(
2017
).
25.
L. C.
Zhang
and
H.
Attar
, “
Selective laser melting of titanium alloys and titanium matrix composites for biomedical applications: A review
,”
Adv. Eng. Mater.
18
,
463
475
(
2016
).
26.
L.-C.
Zhang
,
H.
Attar
,
M.
Calin
, and
J.
Eckert
, “
Review on manufacture by selective laser melting and properties of titanium based materials for biomedical applications
,”
Mater. Technol.
31
,
66
76
(
2016
).
27.
T. W.
Eagar
and
A. D.
Mazzeo
,
Welding Process Fundamentals
(
ASM International
, Materials Park, OH,
2011
).
28.
F.
Yan
,
W.
Xiong
, and
E. J.
Faierson
, “
Grain structure control of additively manufactured metallic materials
,”
Materials
10
,
1260
(
2017
).
29.
J.
Ion
,
Laser Processing of Engineering Materials: Principles, Procedure and Industrial Application
(
Elsevier
,
New York
,
2005
).
30.
J.
Dupont
,
Fundamentals of Weld Solidification
(
ASM International
, Materials Park, OH,
2011
).
31.
S.
David
,
S.
Babu
, and
J.
Vitek
, “
Welding: Solidification and microstructure
,”
J. Miner. Met. Mater. Soc.
55
,
14
20
(
2003
).
32.
S.
Kou
,
Welding Metallurgy
(
Wiley
,
New York
,
2003
).
33.
A. R. A.
Dezfoli
,
W.-S.
Hwang
,
J.
Augusto
,
A. K.
Shukur
, and
S.
Tzeng
, “
Modeling of poly-crystalline silicon ingot crystallization during casting and theoretical suggestion for ingot quality improvement
,”
Mater. Sci. Semicond. Process.
53
,
36
46
(
2016
).
34.
A. R. A.
Dezfoli
,
W.-S.
Hwang
,
W.-C.
Huang
, and
T.-W.
Tsai
, “
Determination and controlling of grain structure of metals after laser incidence: Theoretical approach
,”
Sci. Rep.
7
,
41527
(
2017
).
35.
M.
Li
,
Y.
He
, and
X.
Yuan
, “
Effect of nano-Y2O3 on microstructure of laser cladding cobalt-based alloy coatings
,”
Appl. Surf. Sci.
252
,
2882
2887
(
2006
).
36.
S. H.
Zhang
,
M. X.
Li
,
T. Y.
Cho
,
J. H.
Yoon
,
C. G.
Lee
, and
Y. Z.
He
, “
Laser clad Ni-base alloy added nano-and micron-size CeO2 composites
,”
Opt. Laser Technol.
40
,
716
722
(
2008
).
37.
X.
Li
,
G.
Ji
,
Z.
Chen
,
A.
Addad
,
Y.
Wu
,
H.
Wang
,
J.
Vleugels
,
J.
Van Humbeeck
, and
J.-P.
Kruth
, “
Selective laser melting of nano-TiB2 decorated AlSi10Mg alloy with high fracture strength and ductility
,”
Acta Mater.
129
,
183
193
(
2017
).
38.
J. H.
Martin
,
B. D.
Yahata
,
J. M.
Hundley
,
J. A.
Mayer
,
T. A.
Schaedler
, and
T. M.
Pollock
, “
3D printing of high-strength aluminium alloys
,”
Nature
549
,
365
369
(
2017
).
39.
C.
Ma
,
L.
Chen
,
C.
Cao
, and
X.
Li
, “
Nanoparticle-induced unusual melting and solidification behaviours of metals
,”
Nat. Commun.
8
,
14178
(
2017
).
40.
W.-C.
Huang
,
C.-S.
Chuang
,
C.-C.
Lin
,
C.-H.
Wu
,
D.-Y.
Lin
,
S.-H.
Liu
,
W.-P.
Tseng
, and
J.-B.
Horng
, “
Microstructure-controllable laser additive manufacturing process for metal products
,”
Phys. Procedia
56
,
58
63
(
2014
).
41.
J.
Zhou
,
J.
Xu
,
S.
Huang
,
Z.
Hu
,
X.
Meng
, and
X.
Feng
, “
Effect of laser surface melting with alternating magnetic field on wear and corrosion resistance of magnesium alloy
,”
Surf. Coat. Technol.
309
,
212
219
(
2017
).
42.
J.
Xu
,
J.
Zhou
,
W.
Tan
,
S.
Huang
,
S.
Wang
, and
W.
He
, “
Study on laser surface melting of AZ31B magnesium alloy with different ultrasonic vibration amplitude
,”
Corros. Eng. Sci. Technol.
53
,
73
79
(
2017
).
43.
T.
Yuan
,
Z.
Luo
, and
S.
Kou
, “
Grain refining of magnesium welds by arc oscillation
,”
Acta Mater.
116
,
166
176
(
2016
).
44.
K. P.
Monroy
,
J.
Delgado
,
L.
Sereno
,
J.
Ciurana
, and
N. J.
Hendrichs
, “
Effects of the selective laser melting manufacturing process on the properties of CoCrMo single tracks
,”
Met. Mater. Int.
20
,
873
884
(
2014
).
45.
D.
Sun
,
X.
Li
, and
W.
Tan
,
presented in the 28th Annual International Solid Freeform Fabrication Symposium
,
Austin, TX,
7–9 August 2017
.
46.
I.
Yadroitsev
,
P.
Krakhmalev
,
I.
Yadroitsava
,
S.
Johansson
, and
I.
Smurov
, “
Energy input effect on morphology and microstructure of selective laser melting single track from metallic powder
,”
J. Mater. Process. Technol.
213
,
606
613
(
2013
).
47.
J.
Olsen
,
X.
Zhou
,
Y.
Zhong
,
L.
Liu
,
D.
Wang
,
C.
Yu
,
Y.
Wang
,
K.
Li
,
L.
Xing
, and
J.
Ma
,
presented in IOP Conference Series: Materials Science and Engineering
,
Risø
,
Denmark
,
4–8 September 2017
.
48.
L.
Thijs
,
K.
Kempen
,
J.-P.
Kruth
, and
J.
Van Humbeeck
, “
Fine-structured aluminium products with controllable texture by selective laser melting of pre-alloyed AlSi10Mg powder
,”
Acta Mater.
61
,
1809
1819
(
2013
).
49.
L.
Thijs
,
F.
Verhaeghe
,
T.
Craeghs
,
J.
Van Humbeeck
, and
J.-P.
Kruth
, “
A study of the microstructural evolution during selective laser melting of Ti–6Al–4V
,”
Acta Mater.
58
,
3303
3312
(
2010
).
50.
Y. M.
Arısoy
,
L. E.
Criales
,
T.
Özel
,
B.
Lane
,
S.
Moylan
, and
A.
Donmez
, “
Influence of scan strategy and process parameters on microstructure and its optimization in additively manufactured nickel alloy 625 via laser powder bed fusion
,”
Int. J. Adv. Manuf. Technol.
90
,
1393
1417
(
2017
).
51.
L. N.
Carter
,
C.
Martin
,
P. J.
Withers
, and
M. M.
Attallah
, “
The influence of the laser scan strategy on grain structure and cracking behaviour in SLM powder-bed fabricated nickel superalloy
,”
J. Alloys Compd.
615
,
338
347
(
2014
).
52.
M.
Easton
and
D.
Stjohn
, “
Grain refinement of aluminum alloys: Part I. The nucleant and solute paradigms—A review of the literature
,”
Metall. Mater. Trans. A
30
,
1613
1623
(
1999
).
53.
R.
Streubel
,
M. B.
Wilms
,
C.
Doñate-Buendía
,
A.
Weisheit
,
S.
Barcikowski
,
J. H.
Schleifenbaum
, and
B.
Gökce
, “
Depositing laser-generated nanoparticles on powders for additive manufacturing of oxide dispersed strengthened alloy parts via laser metal deposition
,”
Jpn. J. Appl. Phys.
57
,
040310
(
2018
).
54.
B. E.
Carroll
,
T. A.
Palmer
, and
A. M.
Beese
, “
Anisotropic tensile behavior of Ti–6Al–4V components fabricated with directed energy deposition additive manufacturing
,”
Acta Mater.
87
,
309
320
(
2015
).
55.
N.
Yoshigai
,
K.
Kudo
,
F.
Tsumori
,
T.
Osada
, and
H.
Miura
, “
Anisotropic mechanical properties of Ni-base superalloy compacts by direct laser forming technology
,”
J. Jpn. Soc. Powder Powder Metallur.
63
,
427
433
(
2016
).
56.
M. L. M.
Sistiaga
,
R.
Mertens
,
B.
Vrancken
,
X.
Wang
,
B.
Van Hooreweder
,
J.-P.
Kruth
, and
J.
Van Humbeeck
, “
Changing the alloy composition of Al7075 for better processability by selective laser melting
,”
J. Mater. Process. Technol.
238
,
437
445
(
2016
).
57.
T.
Vilaro
,
C.
Colin
, and
J.-D.
Bartout
, “
As-fabricated and heat-treated microstructures of the Ti-6Al-4V alloy processed by selective laser melting
,”
Metall. Mater. Trans. A
42
,
3190
3199
(
2011
).
58.
C.
Qiu
,
N. J.
Adkins
, and
M. M.
Attallah
, “
Microstructure and tensile properties of selectively laser-melted and of HIPed laser-melted Ti–6Al–4V
,”
Mater. Sci. Eng. A
578
,
230
239
(
2013
).
59.
C.
Qiu
,
S.
Yue
,
N. J.
Adkins
,
M.
Ward
,
H.
Hassanin
,
P. D.
Lee
,
P. J.
Withers
, and
M. M.
Attallah
, “
Influence of processing conditions on strut structure and compressive properties of cellular lattice structures fabricated by selective laser melting
,”
Mater. Sci. Eng. A
628
,
188
197
(
2015
).
60.
C.
Panwisawas
,
C.
Qiu
,
Y.
Sovani
,
J.
Brooks
,
M.
Attallah
, and
H.
Basoalto
, “
On the role of thermal fluid dynamics into the evolution of porosity during selective laser melting
,”
Scr. Mater.
105
,
14
17
(
2015
).
61.
H.
Gong
,
K.
Rafi
,
H.
Gu
,
T.
Starr
, and
B.
Stucker
, “
Analysis of defect generation in Ti–6Al–4V parts made using powder bed fusion additive manufacturing processes
,”
Addit. Manuf.
1
,
87
98
(
2014
).
62.
H.
Gu
,
H.
Gong
,
D.
Pal
,
K.
Rafi
,
T.
Starr
, and
B.
Stucker
,
presented in 2013 Solid Freeform Fabrication Symposium
,
Austin, TX
,
12–14 August 2013
.
63.
B.
Zhang
,
Y.
Li
, and
Q.
Bai
, “
Defect formation mechanisms in selective laser melting: A review
,”
Chin. J. Mech. Eng.
30
,
515
527
(
2017
).
64.
G.
Kasperovich
,
J.
Haubrich
,
J.
Gussone
, and
G.
Requena
, “
Correlation between porosity and processing parameters in TiAl6V4 produced by selective laser melting
,”
Mater. Des.
105
,
160
170
(
2016
).
65.
H.
Stoffregen
,
J.
Fischer
,
C.
Siedelhofer
, and
E.
Abele
,
presented in Solid Freeform Fabrication Proceedings
,
Austin, TX,
8–10 August 2011
.
66.
N. T.
Aboulkhair
,
N. M.
Everitt
,
I.
Ashcroft
, and
C.
Tuck
, “
Reducing porosity in AlSi10Mg parts processed by selective laser melting
,”
Addit. Manuf.
1
,
77
86
(
2014
).
67.
A.
Ahmed
,
M.
Wahab
,
A.
Raus
,
K.
Kamarudin
,
Q.
Bakhsh
, and
D.
Ali
, “
Effects of selective laser melting parameters on relative density of AlSi10Mg
,”
Int. J. Eng. Technol.
8
,
2552
2557
(
2017
).
68.
M.
Ma
,
Z.
Wang
,
M.
Gao
, and
X.
Zeng
, “
Layer thickness dependence of performance in high-power selective laser melting of 1Cr18Ni9Ti stainless steel
,”
J. Mater. Process. Technol.
215
,
142
150
(
2015
).
69.
B.
AlMangour
,
D.
Grzesiak
, and
J.
Yang
,
presented in the 26th Annual International Solid Freeform Fabrication Symposium
,
Austin, TX,
8–10 August 2016
.
70.
R.
Morgan
,
A.
Papworth
,
C.
Sutcliffe
,
P.
Fox
, and
W.
O’neill
, “
High density net shape components by direct laser re-melting of single-phase powders
,”
J. Mater. Sci.
37
,
3093
3100
(
2002
).
71.
W.
Meiners
,
K.
Wissenbach
, and
R.
Propawe
,
presented in Proceedings of the LANE
,
Erlangen
,
23–26 September 1997
.
72.
D.
Hagedorn-Hansen
,
M.
Bezuidenhout
,
D.
Dimitrov
, and
T.
Oosthuizen
, “
The effects of selective laser melting scan strategies on deviation of hybrid parts
,”
S. Afr. J. Ind. Eng.
28
,
200
212
(
2017
).
73.
G.
Casalino
,
S.
Campanelli
,
N.
Contuzzi
, and
A.
Ludovico
, “
Experimental investigation and statistical optimisation of the selective laser melting process of a maraging steel
,”
Opt. Laser Technol.
65
,
151
158
(
2015
).
74.
Y.
Lu
,
S.
Wu
,
Y.
Gan
,
T.
Huang
,
C.
Yang
,
L.
Junjie
, and
J.
Lin
, “
Study on the microstructure, mechanical property and residual stress of SLM Inconel-718 alloy manufactured by differing island scanning strategy
,”
Opt. Laser Technol.
75
,
197
206
(
2015
).
75.
N.
Read
,
W.
Wang
,
K.
Essa
, and
M. M.
Attallah
, “
Selective laser melting of AlSi10Mg alloy: Process optimisation and mechanical properties development
,”
Mater. Des.
65
,
417
424
(
2015
).
76.
H.
Niu
and
I.
Chang
, “
Selective laser sintering of gas atomized M2 high speed steel powder
,”
J. Mater. Sci.
35
,
31
38
(
2000
).
77.
S.
Wang
,
Y.
Liu
,
W.
Shi
,
B.
Qi
,
J.
Yang
,
F.
Zhang
,
D.
Han
, and
Y.
Ma
, “
Research on high layer thickness fabricated of 316L by selective laser melting
,”
Materials
10
,
pii: E1055
(
2017
).
78.
R.
Li
,
Y.
Shi
,
Z.
Wang
,
L.
Wang
,
J.
Liu
, and
W.
Jiang
, “
Densification behavior of gas and water atomized 316L stainless steel powder during selective laser melting
,”
Appl. Surf. Sci.
256
,
4350
4356
(
2010
).
79.
K.
Abd-Elghany
and
D.
Bourell
, “
Property evaluation of 304L stainless steel fabricated by selective laser melting
,”
Rapid Prototyping J.
18
,
420
428
(
2012
).
80.
P.
Jerrard
,
L.
Hao
, and
K.
Evans
, “
Experimental investigation into selective laser melting of austenitic and martensitic stainless steel powder mixtures
,”
Proc. Inst. Mech. Eng. B J. Eng. Manuf.
223
,
1409
1416
(
2009
).
81.
A.
Yadollahi
,
N.
Shamsaei
,
S. M.
Thompson
, and
D. W.
Seely
, “
Effects of process time interval and heat treatment on the mechanical and microstructural properties of direct laser deposited 316L stainless steel
,”
Mater. Sci. Eng. A
644
,
171
183
(
2015
).
82.
L.
Facchini
,
N.
Vicente
,
I.
Lonardelli
,
E.
Magalini
,
P.
Robotti
, and
A.
Molinari
, “
Metastable austenite in 17–4 precipitation-hardening stainless steel produced by selective laser melting
,”
Adv. Eng. Mater.
12
,
184
188
(
2010
).
83.
T.
LeBrun
,
T.
Nakamoto
,
K.
Horikawa
, and
H.
Kobayashi
, “
Effect of retained austenite on subsequent thermal processing and resultant mechanical properties of selective laser melted 17–4 PH stainless steel
,”
Mater. Des.
81
,
44
53
(
2015
).
84.
K.
Kempen
,
E.
Yasa
,
L.
Thijs
,
J.-P.
Kruth
, and
J.
Van Humbeeck
, “
Microstructure and mechanical properties of selective laser melted 18Ni-300 steel
,”
Phys. Procedia
12
,
255
263
(
2011
).
85.
P.
Krakhmalev
,
I.
Yadroitsava
,
G.
Fredriksson
, and
I.
Yadroitsev
, “
In situ heat treatment in selective laser melted martensitic AISI 420 stainless steels
,”
Mater. Des.
87
,
380
385
(
2015
).
86.
L.
Murr
,
S.
Quinones
,
S.
Gaytan
,
M.
Lopez
,
A.
Rodela
,
E.
Martinez
,
D.
Hernandez
,
E.
Martinez
,
F.
Medina
, and
R.
Wicker
, “
Microstructure and mechanical behavior of Ti–6Al–4V produced by rapid-layer manufacturing, for biomedical applications
,”
J. Mech. Behav. Biomed. Mater.
2
,
20
32
(
2009
).
87.
S.
Chen
,
J.
Huang
,
C.
Pan
,
C.
Lin
,
T.
Yang
,
Y.
Huang
,
C.
Ou
,
L.
Chen
,
D.
Lin
, and
H.
Lin
, “
Microstructure and mechanical properties of open-cell porous Ti-6Al-4V fabricated by selective laser melting
,”
J. Alloys Compd.
713
,
248
254
(
2017
).
88.
R.
Mulay
,
J.
Moore
,
J.
Florando
,
N.
Barton
, and
M.
Kumar
, “
Microstructure and mechanical properties of Ti–6Al–4V: Mill-annealed versus direct metal laser melted alloys
,”
Mater. Sci. Eng. A
666
,
43
47
(
2016
).
89.
W.
Xu
,
M.
Brandt
,
S.
Sun
,
J.
Elambasseril
,
Q.
Liu
,
K.
Latham
,
K.
Xia
, and
M.
Qian
, “
Additive manufacturing of strong and ductile Ti–6Al–4V by selective laser melting via in situ martensite decomposition
,”
Acta Mater.
85
,
74
84
(
2015
).
90.
Q.
Wang
,
C.
Han
,
T.
Choma
,
Q.
Wei
,
C.
Yan
,
B.
Song
, and
Y.
Shi
, “
Effect of Nb content on microstructure, property and in vitro apatite-forming capability of Ti-Nb alloys fabricated via selective laser melting
,”
Mater. Des.
126
,
268
277
(
2017
).
91.
E.
Chlebus
,
B.
Kuźnicka
,
T.
Kurzynowski
, and
B.
Dybała
, “
Microstructure and mechanical behaviour of Ti–6Al–7Nb alloy produced by selective laser melting
,”
Mater. Charact.
62
,
488
495
(
2011
).
92.
W.
Li
,
J.
Liu
,
Y.
Zhou
,
S.
Li
,
S.
Wen
,
Q.
Wei
,
C.
Yan
, and
Y.
Shi
, “
Effect of laser scanning speed on a Ti-45Al-2Cr-5Nb alloy processed by selective laser melting: Microstructure, phase and mechanical properties
,”
J. Alloys Compd.
688
,
626
636
(
2016
).
93.
Y.
Idell
,
L. E.
Levine
,
A. J.
Allen
,
F.
Zhang
,
C. E.
Campbell
,
G.
Olson
,
J.
Gong
,
D.
Snyder
, and
H.
Deutchman
, “
Unexpected δ-phase formation in additive-manufactured Ni-based superalloy
,”
J. Miner. Met. Mater. Soc.
68
,
950
959
(
2016
).
94.
Q.
Jia
and
D.
Gu
, “
Selective laser melting additive manufacturing of Inconel 718 superalloy parts: Densification, microstructure and properties
,”
J. Alloys Compd.
585
,
713
721
(
2014
).
95.
M.
Tang
,
P. C.
Pistorius
,
S.
Narra
, and
J. L.
Beuth
, “
Rapid solidification: Selective laser melting of AlSi10Mg
,”
J. Miner. Met. Mater. Soc.
68
,
960
966
(
2016
).
96.
S.
Sun
,
L.
Zheng
,
Y.
Liu
,
J.
Liu
, and
H.
Zhang
, “
Selective laser melting of Al-Fe-V-Si heat-resistant aluminum alloy powder: Modeling and experiments
,”
Int. J. Adv. Manuf. Technol.
80
,
1787
1797
(
2015
).
97.
P.
Ma
,
Y.
Jia
,
K. G.
Prashanth
,
S.
Scudino
,
Z.
Yu
, and
J.
Eckert
, “
Microstructure and phase formation in Al–20Si–5Fe–3Cu–1Mg synthesized by selective laser melting
,”
J. Alloys Compd.
657
,
430
435
(
2016
).
98.
C.
Shuai
,
Y.
Yang
,
P.
Wu
,
X.
Lin
,
Y.
Liu
,
Y.
Zhou
,
P.
Feng
,
X.
Liu
, and
S.
Peng
, “
Laser rapid solidification improves corrosion behavior of Mg-Zn-Zr alloy
,”
J. Alloys Compd.
691
,
961
969
(
2017
).
99.
T.
Maeshima
and
K.
Oh-ishi
, “
Solute clustering and supersaturated solid solution of AlSi10Mg alloy fabricated by selective laser melting
,”
Heliyon
5
,
e01186
(
2019
).
100.
H.
Zhang
,
D.
Gu
,
J.
Yang
,
D.
Dai
,
T.
Zhao
,
C.
Hong
,
A.
Gasser
, and
R.
Poprawe
, “
Selective laser melting of rare earth element Sc modified aluminum alloy: Thermodynamics of precipitation behavior and its influence on mechanical properties
,”
Addit. Manuf.
23
,
1
12
(
2018
).
101.
R.
Li
,
H.
Chen
,
H.
Zhu
,
M.
Wang
,
C.
Chen
, and
T.
Yuan
, “
Effect of aging treatment on the microstructure and mechanical properties of Al-3.02 Mg-0.2 Sc-0.1 Zr alloy printed by selective laser melting
,”
Mater. Des.
168
,
107668
(
2019
).
102.
V.
Gunenthiram
,
P.
Peyre
,
M.
Schneider
,
M.
Dal
,
F.
Coste
, and
R.
Fabbro
, “
Analysis of laser–melt pool–powder bed interaction during the selective laser melting of a stainless steel
,”
J. Laser Appl.
29
,
022303
(
2017
).
103.
D.
Gu
and
Y.
Shen
, “
Balling phenomena during direct laser sintering of multi-component Cu-based metal powder
,”
J. Alloys Compd.
432
,
163
166
(
2007
).
104.
D.
Gu
,
Y.
Shen
,
J.
Yang
, and
Y.
Wang
, “
Effects of processing parameters on direct laser sintering of multicomponent Cu based metal powder
,”
Mater. Sci. Technol.
22
,
1449
1455
(
2006
).
105.
H.
Gong
,
H.
Gu
,
K.
Zeng
,
J.
Dilip
,
D.
Pal
,
B.
Stucker
,
D.
Christiansen
,
J.
Beuth
, and
J. J.
Lewandowski
,
presented in Solid Freeform Fabrication Symposium
,
Austin, TX,
4–6 August 2014
.
106.
H.
Niu
and
I.
Chang
, “
Instability of scan tracks of selective laser sintering of high speed steel powder
,”
Scr. Mater.
41
,
1229
1234
(
1999
).
107.
N. K.
Tolochko
,
S. E.
Mozzharov
,
I. A.
Yadroitsev
,
T.
Laoui
,
L.
Froyen
,
V. I.
Titov
, and
M. B.
Ignatiev
, “
Balling processes during selective laser treatment of powders
,”
Rapid Prototyping J.
10
,
78
87
(
2004
).
108.
X.
Zhou
,
X.
Liu
,
D.
Zhang
,
Z.
Shen
, and
W.
Liu
, “
Balling phenomena in selective laser melted tungsten
,”
J. Mater. Process. Technol.
222
,
33
42
(
2015
).
109.
S.
Das
, “
Physical aspects of process control in selective laser sintering of metals
,”
Adv. Eng. Mater.
5
,
701
711
(
2003
).
110.
D.
Gu
and
Y.
Shen
, “
Balling phenomena in direct laser sintering of stainless steel powder: Metallurgical mechanisms and control methods
,”
Mater. Des.
30
,
2903
2910
(
2009
).
111.
R.
Li
,
J.
Liu
,
Y.
Shi
,
L.
Wang
, and
W.
Jiang
, “
Balling behavior of stainless steel and nickel powder during selective laser melting process
,”
Int. J. Adv. Manuf. Technol.
59
,
1025
1035
(
2012
).
112.
Y. F.
Shen
,
D.
Gu
, and
Y.
Pan
, “
Balling process in selective laser sintering 316 stainless steel powder
,”
Key. Eng. Mater.
315–316
,
357
360
(
2006
).
113.
X.
Cao
,
W.
Wallace
,
C.
Poon
, and
J.-P.
Immarigeon
, “
Research and progress in laser welding of wrought aluminum alloys. I. Laser welding processes
,”
Mater. Manuf. Process.
18
,
1
22
(
2003
).
114.
J.
Chen
,
X.
Lin
,
T.
Wang
,
H.
Yang
, and
W.
Huang
, “
The hot cracking mechanism of 316 L stainless steel cladding in rapid laser forming process
,”
Rare Metal Mater. Eng.
32
,
183
186
(
2003
).
115.
L. N.
Carter
,
K.
Essa
, and
M. M.
Attallah
, “
Optimisation of selective laser melting for a high temperature Ni-superalloy
,”
Rapid Prototyping J.
21
,
423
432
(
2015
).
116.
L. N.
Carter
,
M. M.
Attallah
, and
R. C.
Reed
, “
Laser powder bed fabrication of nickel-base superalloys: Influence of parameters; characterisation, quantification and mitigation of cracking
,”
Superalloys
2012
,
577
586
(
2012
).
117.
D.
Wang
,
C.
Yu
,
J.
Ma
,
W.
Liu
, and
Z.
Shen
, “
Densification and crack suppression in selective laser melting of pure molybdenum
,”
Mater. Des.
129
,
44
52
(
2017
).
118.
D.
Tomus
,
T.
Jarvis
,
X.
Wu
,
J.
Mei
,
P.
Rometsch
,
E.
Herny
,
J.-F.
Rideau
, and
S.
Vaillant
, “
Controlling the microstructure of Hastelloy-X components manufactured by selective laser melting
,”
Phys. Procedia
41
,
823
827
(
2013
).
119.
N. J.
Harrison
,
I.
Todd
, and
K.
Mumtaz
, “
Reduction of micro-cracking in nickel superalloys processed by selective laser melting: A fundamental alloy design approach
,”
Acta Mater.
94
,
59
68
(
2015
).
120.
M.
Cloots
,
P. J.
Uggowitzer
, and
K.
Wegener
, “
Investigations on the microstructure and crack formation of IN738LC samples processed by selective laser melting using Gaussian and doughnut profiles
,”
Mater. Des.
89
,
770
784
(
2016
).
121.
M.
Agarwala
,
D.
Bourell
,
J.
Beaman
,
H.
Marcus
, and
J.
Barlow
, “
Direct selective laser sintering of metals
,”
Rapid Prototyping J.
1
,
26
36
(
1995
).
122.
K.
Kempen
,
L.
Thijs
,
B.
Vrancken
,
S.
Buls
,
J.
Van Humbeeck
, and
J.
Kruth
,
presented in Proceedings of the 24th International Solid Freeform Fabrication Symposium. Laboratory for Freeform Fabrication
,
Austin, TX,
12–14 August 2013
.
123.
R.
Mertens
,
S.
Dadbakhsh
,
J.
Van Humbeeck
, and
J.-P.
Kruth
, “
Application of base plate preheating during selective laser melting
,”
Procedia CIRP
74
,
5
11
(
2018
).
124.
H.
Zhang
,
H.
Zhu
,
X.
Nie
,
J.
Yin
,
Z.
Hu
, and
X.
Zeng
, “
Effect of zirconium addition on crack, microstructure and mechanical behavior of selective laser melted Al-Cu-Mg alloy
,”
Scr. Mater.
134
,
6
10
(
2017
).
125.
T. M.
Rodgers
,
J. D.
Madison
,
V.
Tikare
, and
M. C.
Maguire
, “
Predicting mesoscale microstructural evolution in electron beam welding
,”
J. Miner. Met. Mater. Soc.
68
,
1419
1426
(
2016
).
126.
T. M.
Rodgers
,
J. D.
Madison
, and
V.
Tikare
, “
Simulation of metal additive manufacturing microstructures using kinetic Monte Carlo
,”
Comput. Mater. Sci.
135
,
78
89
(
2017
).
127.
A.
Choudhury
,
K.
Reuther
,
E.
Wesner
,
A.
August
,
B.
Nestler
, and
M.
Rettenmayr
, “
Comparison of phase-field and cellular automaton models for dendritic solidification in Al–Cu alloy
,”
Comput. Mater. Sci.
55
,
263
268
(
2012
).
128.
A.
Zinoviev
,
O.
Zinovieva
,
V.
Ploshikhin
,
V.
Romanova
, and
R.
Balokhonov
, “
Evolution of grain structure during laser additive manufacturing. Simulation by a cellular automata method
,”
Mater. Des.
106
,
321
329
(
2016
).
129.
H.
Yin
and
S.
Felicelli
, “
Dendrite growth simulation during solidification in the LENS process
,”
Acta Mater.
58
,
1455
1465
(
2010
).
130.
P.
Nie
,
O.
Ojo
, and
Z.
Li
, “
Numerical modeling of microstructure evolution during laser additive manufacturing of a nickel-based superalloy
,”
Acta Mater.
77
,
85
95
(
2014
).
131.
O.
Lopez-Botello
,
U.
Martinez-Hernandez
,
J.
Ramírez
,
C.
Pinna
, and
K.
Mumtaz
, “
Two-dimensional simulation of grain structure growth within selective laser melted AA-2024
,”
Mater. Des.
113
,
369
376
(
2017
).
132.
A.
Rai
,
M.
Markl
, and
C.
Körner
, “
A coupled cellular automaton—Lattice Boltzmann model for grain structure simulation during additive manufacturing
,”
Comput. Mater. Sci.
124
,
37
48
(
2016
).
133.
A.
Rai
,
H.
Helmer
, and
C.
Körner
, “
Simulation of grain structure evolution during powder bed based additive manufacturing
,”
Addit. Manuf.
13
,
124
134
(
2017
).
134.
W.
Chen
, “
A computational multiscale integrated model for microstructure simulation in selective laser melting
,”
Thesis
,
Hong Kong University of Science and Technology
,
2016
.
135.
W.
Tan
,
N. S.
Bailey
, and
Y. C.
Shin
, “
A novel integrated model combining cellular automata and phase field methods for microstructure evolution during solidification of multi-component and multi-phase alloys
,”
Comput. Mater. Sci.
50
,
2573
2585
(
2011
).
136.
Y.
Cao
and
J.
Choi
, “
Solidification microstructure evolution model for laser cladding process
,”
J. Heat Transf.
129
,
852
863
(
2007
).
137.
T.
Keller
,
G.
Lindwall
,
S.
Ghosh
,
L.
Ma
,
B. M.
Lane
,
F.
Zhang
,
U. R.
Kattner
,
E. A.
Lass
,
J. C.
Heigel
, and
Y.
Idell
, “
Application of finite element, phase-field, and calphad-based methods to additive manufacturing of Ni-based superalloys
,”
Acta Mater.
139
,
244
253
(
2017
).
138.
V.
Fallah
,
M.
Amoorezaei
,
N.
Provatas
,
S.
Corbin
, and
A.
Khajepour
, “
Phase-field simulation of solidification morphology in laser powder deposition of Ti–Nb alloys
,”
Acta Mater.
60
,
1633
1646
(
2012
).
139.
J.
Kundin
,
L.
Mushongera
, and
H.
Emmerich
, “
Phase-field modeling of microstructure formation during rapid solidification in Inconel 718 superalloy
,”
Acta Mater.
95
,
343
356
(
2015
).
140.
R.
Acharya
,
J. A.
Sharon
, and
A.
Staroselsky
, “
Prediction of microstructure in laser powder bed fusion process
,”
Acta Mater.
124
,
360
371
(
2017
).
141.
A.
Popovich
,
V. S.
Sufiiarov
,
E.
Borisov
,
I.
Polozov
, and
D.
Masaylo
, “
Design and manufacturing of tailored microstructure with selective laser melting
,”
Mater. Phys. Mech.
38
,
1
10
(
2018
).
142.
J.
Yin
,
G.
Peng
,
C.
Chen
,
J.
Yang
,
H.
Zhu
,
L.
Ke
,
Z.
Wang
,
D.
Wang
,
M.
Ma
, and
G.
Wang
, “
Thermal behavior and grain growth orientation during selective laser melting of Ti-6Al-4 V alloy
,”
J. Mater. Process. Technol.
260
,
57
65
(
2018
).
143.
S.
Chang
,
L.
Li
,
L.
Lu
, and
J. Y. H.
Fuh
, “
Selective laser sintering of porous silica enabled by carbon additive
,”
Materials
10
,
1313
(
2017
).
144.
I. A.
van Hengel
,
M.
Riool
,
L. E.
Fratila-Apachitei
,
J.
Witte-Bouma
,
E.
Farrell
,
A. A.
Zadpoor
,
S. A.
Zaat
, and
I.
Apachitei
, “
Selective laser melting porous metallic implants with immobilized silver nanoparticles kill and prevent biofilm formation by methicillin-resistant Staphylococcus aureus
,”
Biomaterials
140
,
1
15
(
2017
).
145.
D.
Pattanayak
,
T.
Matsushita
,
H.
Takadama
,
A.
Fukuda
,
M.
Takemoto
,
S.
Fujibayashi
,
K.
Sasaki
,
N.
Nishida
,
T.
Nakamura
, and
T.
Kokubo
, “
Fabrication of bioactive porous Ti metal with structure similar to human cancellous bone by selective laser melting
,”
Bioceramics Dev. Appl.
1
,
1
3
(
2011
).
146.
M.
Yan
,
X.
Tian
,
G.
Peng
,
Y.
Cao
, and
D.
Li
, “
Hierarchically porous materials prepared by selective laser sintering
,”
Mater. Des.
135
,
62
68
(
2017
).
147.
T. L.
Starr
,
K.
Rafi
,
B.
Stucker
, and
C. M.
Scherzer
, “
Controlling phase composition in selective laser melted stainless steels
,”
Proc. of SFF Symposium
439
446
(
2012
).
148.
K. P.
Davidson
and
S.
Singamneni
, “
Magnetic characterization of selective laser-melted Saf 2507 duplex stainless steel
,”
J. Miner. Met. Mater. Soc.
69
,
569
574
(
2017
).
149.
J.
Akram
,
P.
Chalavadi
,
D.
Pal
, and
B.
Stucker
, “
Understanding grain evolution in additive manufacturing through modeling
,”
Addit. Manuf.
21
,
255
268
(
2018
).
150.
J. A.
Koepf
,
M. R.
Gotterbarm
,
M.
Markl
, and
C.
Körner
, “
3D multi-layer grain structure simulation of powder bed fusion additive manufacturing
,”
Acta Mater.
152
,
119
126
(
2018
).
151.
S.
Chen
,
Y.
Xu
, and
Y.
Jiao
, “
A hybrid finite-element and cellular-automaton framework for modeling 3D microstructure of Ti–6Al–4V alloy during solid–solid phase transformation in additive manufacturing
,”
Model. Simul. Mater. Sci. Eng.
26
,
045011
(
2018
).
152.
H.-C.
Tran
,
Y.-L.
Lo
, and
M.-H.
Huang
, “
Analysis of scattering and absorption characteristics of metal powder layer for selective laser sintering
,”
IEEE ASME Trans. Mech.
22
,
1807
1817
(
2017
).
153.
M.
Xia
,
D.
Gu
,
G.
Yu
,
D.
Dai
,
H.
Chen
, and
Q.
Shi
, “
Porosity evolution and its thermodynamic mechanism of randomly packed powder-bed during selective laser melting of Inconel 718 alloy
,”
Int. J. Mach. Tools Manuf.
116
,
96
106
(
2017
).
154.
S.
Rashidi
,
J. A.
Esfahani
, and
N.
Karimi
, “
Porous materials in building energy technologies—A review of the applications, modelling and experiments
,”
Renew. Sust. Energy Rev.
91
,
229
247
(
2018
).
155.
F.
Calignano
,
G.
Cattano
,
L.
Iuliano
, and
D.
Manfredi
,
presented in International Conference on Additive Manufacturing in Products and Applications
,
ETH Zürich, Switzerland
,
13–15 September 2017
.
You do not currently have access to this content.