Laser remote scanner (LRS) technology is one of the most promising topics in industrial manufacturing. To overcome current limitations for large-scale applications, an automated scanner system with 30 kW laser power has been developed. This system includes a stereo camera-based 3D vision for part detection as well as for task estimation. For this purpose, precise 3D/6D laser tool calibration has been conducted. To control the effect of focus shift due to high laser power level, additively manufactured lens holders and an easy to compute real-time focus shift compensation model have been investigated and are presented. Section II briefly introduces the 30 kW LRS concept, which includes demands and limitations. Furthermore, approaches for optical design and mechanical solutions, such as a gimbal-mounted mirror, are shown. The integration of the stereo camera system is considered. Section III describes laser tool calibration in 3D/6D, which is a prerequisite for absolute high-precision laser tool positioning of self-teaching automated LRS. A feasibility study has been performed. Laser beam induced thermal behaviors in the 30 kW LRS optics are discussed in Sec. IV, which causes refraction index and geometry changes that lead to focus shift. Additive manufactured internal cooled lens holder structure has been studied. A model for real-time compensation of focus shift has been investigated. It combines thermo-optic, stress-optic, and geometric effect with ABCD matrix analysis for optics. The topics are summarized, and an outlook is given on further applications for high-power LRS.

1.
K. D.
Debschütz
and
W.
Becker
, “
Potenziale des robotergeführten Remote-Laserschweißens
,” in
EALA 2005, 6th European Expert Conference
,
Bad Nauheim, Germany, 2–3 February 2005
(Vincentz Network GmbH & Co. KG, Hannover,
2005
), pp.
258
272
.
2.
S. L.
Ream
, “
North American automotive laser applications—Today and tomorrow
,” in
EALA 2005, 6th European Expert Conference
,
Bad Nauheim, Germany, 2–3 February 2005
(Vincentz Network GmbH & Co. KG, Hannover,
2005
), pp.
95
133
.
3.
P.
Schäfer
, “
Schneiden auf Abstand
,”
ATZ Prod.
3
,
24
28
(
2010
).
4.
A.
Fysikopoulos
,
G.
Pastras
,
J.
Stavridis
,
P.
Stavropoulos
, and
G.
Chryssolouris
, “
On the performance evaluation of remote laser welding process: An automotive case study
,” in
48th CIRP Conference on Manufacturing Systems 2015, Procedia CIRP 41, Ischia (Naples)
, Italy, 24–26 June 2015 (Elsevier B.V., Amsterdam,
2015
), pp.
969
974
.
5.
S.
Katayama
,
Introduction: Fundamentals of Laser Welding, Handbook of Laser Welding Technologies
, 1st ed., Woodhead Publishing Series in Electronic and Optical Materials, 41 (
Elsevier Science
,
Oxford
,
2013
), pp.
3
16.
6.
A.
Gebhardt
,
Additive Fertigungsverfahren: Additive Manufacturing und 3D-Drucken für Prototyping—Tooling—Produktion
, 5th ed. (
Carl Hanser Verlag
,
Munich
,
2016
).
7.
J.
Cann
, “
A look at remote laser beam welding
,”
Welding J.
84
,
34
37
(
2005
), available at https://app.aws.org/www/wj/2005/08/WJ_2005_08.pdf.
8.
G.
Tsoukantas
,
A.
Stournaras
, and
G.
Chryssolouris
, “
Experimental investigation of remote welding with CO2 and Nd:YAG laser-based systems
,”
J. Laser Appl.
20
,
50
58
(
2008
).
9.
C.
Emmelmann
,
Laser Remote Welding—Status and Potential for Innovations in Industrial Production
(
LiM 2005
,
Munich
,
2005
).
10.
A.
Ostendorf
, “
Laser remote welding—From development to application. An overview with regard to the history, the present state and the future of a promising technology
,” in
EALA 2005, 6th European Expert Conference
,
Bad Nauheim, Germany, 2–3 February 2005
(Vincentz Network GmbH & Co. KG, Hannover,
2005
), pp.
195
229
.
11.
M. F.
Zäh
,
J.
Moesl
,
J.
Musiol
, and
F.
Oefele
, “
Material processing with remote technology revolution or evolution?
,”
Phys. Procedia
5
(
A
),
19
33
(
2010
).
12.
A.
Wetzig
,
Developments in Beam Scanning (Remote) Technologies and Smart Beam Processing, Handbook of Laser Welding Technologies
, 1st ed., Woodhead Publishing Series in Electronic and Optical Materials, 41 (
Elsevier Science
,
Oxford
,
2013
), pp.
422
433
.
13.
C.
Thomy
,
M.
Grupp
,
T.
Seefeld
,
G.
Sepold
, and
F.
Vollertsen
, “
CO2-Laser-Remoteschweißen
.
Grundlagen, Prozessuntersuchungen und Anwendungen,” wt Werkstattstechnik Online
94
(
7/8
),
373
378
(
2004
), available at https://www.werkstattstechnik.de/wt/article.php?data[article_id]=791.
14.
G.
Tsoukantas
and
G.
Chryssolouris
, “
Theoretical and experimental analysis of the remote welding process on thin, lap-joined AISI 304 sheets
,”
Int. J. Adv. Manuf. Technol.
35
,
880
894
(
2008
).
15.
P.
Kah
,
J.
Lu
,
J.
Martikainen
, and
R.
Suoranta
, “
Remote laser welding with high power fiber lasers
,”
Engineering
5
,
700
706
(
2013
).
16.
C.
Emmelmann
,
G.
Cerwenka
, and
J.
Wollnack
, “
Light prototyping im Schiff- und Ingenieurbau. QuInLas—Innovative Laserfügeverfahren für den 3-dimensionalen Sektionsbau
,” in
14. Tagung Schweißen in der Maritimen Technik und im Ingenieurbau
,
Hamburg, Germany, 15–16 April 2014
(SLV Nord, Hamburg,
2014
), pp.
62
77
.
17.
TRUMPF Laser- und Systemtechnik GmbH, Programmierbare Fokussieroptiken, Technische Daten, Ditzingen (2018).
18.
SCANLAB GmbH, intelliWELD II, intelliWELD, Puchheim (2017).
19.
M.
Munsch
,
J.
Wollnack
,
M.
Kirchhoff
, and
C.
Emmelmann
, “Parallelkinematisches Spiegel-Ablenksystem mit doppelkardanischer Aufhängung,” DE102012012780 A1, WO2014000883 A1 (
2012
).
20.
C.
Emmelmann
,
K.
Schenk
,
J.
Wollnack
, and
M.
Kirchhoff
, “
High-precision calibration of a weld-on-the-fly-system
,”
Phys. Procedia
12
(
A
),
739
743
(
2011
).
21.
J.
Wollnack
,
3D/6D-Visionsysteme in der Robotik–Vollautomatische Sensor-, Sensor-Greifer- und Roboter-Kalibration, wt Werkstattstechnik Online 97(9)
(
Springer-VDI-Verlag
,
Düsseldorf
,
2007
), pp.
718
725
.
22.
Corning Incorporated
,
Corning HPFS® 7979, 7980, 8655 Fused Silica. Optical Materials Product Information, Specialty Materials Division
(Corning Inc.,
New York
,
2014
).
23.
B. H. W. S.
De Jong
,
R. G. C.
Beerkens
,
P. A.
van Nijnatten
, and
E.
Le Bourhis
,
Glass, 1. Fundamentals, ULLMANN’S Encyclopedia of Industrial Chemistry
, 7th ed. (
Wiley-VCH Verlag GmbH & Co. KGaA
,
Weinheim
,
2011
), p.
11
.
24.
Quartz Glass for Optics. Data and Properties
(Heraeus Quarzglas GmbH & Co. KG,
Hanau
,
2018
).
25.
G.
Cerwenka
,
J.
Wollnack
, and
C.
Emmelmann
, “
Development of an adaptive focus position control system for a new high-performance laser remote welding head
,” in
LiM 2015
,
Munich, Germany
, 22–25 June 2015 (
German Scientific Laser Society
,
Munich
,
2015
).
26.
E.-U.
Schlünder
and
H.
Martin
,
Einführung in die Wärmeübertragung. Für Maschinenbauer, Verfahrenstechniker, Chemie-Ingenieure, Physiker, Biologen und Chemiker ab dem 4. Semester
, 8th ed. (
Springer-Verlag
,
Berlin
,
1995
).
27.
P.
von Böckh
and
T.
Wetzel
,
Wärmeübertragung. Grundlagen und Praxis
, 6th ed. (
Springer-Verlag
,
Berlin
,
2015
).
28.
E. K. W.
Nußelt
, “
Das Grundgesetz des Wärmeüberganges
,” in Gesundheits-Ingenieur-Zeitschrift für die gesamte Städtehygiene, Vol. 38 (
Oldenburg
,
Munich Berlin
,
2015
), pp.
477
482
,
490
496
.
29.
H.
Bach
and
N.
Neuroth
,
The Properties of Optical Glass, Schott Series on Glass and Glass Ceramics
(
Springer-Verlag
,
Berlin
,
1995
), pp.
105
114
.
30.
G.
Litfin
,
Technische Optik in der Praxis
, 3rd ed. (
Springer-Verlag
,
Berlin
,
2005
), pp.
144
147
.
31.
SCHOTT AG
, TIE-19: Temperature coefficient of the refractive index (
2016
)
,
pp.
1
3
.
32.
SCHOTT AG
, TIE-27: Stress in optical glass (
2004
), p.
6
.
You do not currently have access to this content.