A robust method is introduced to simulate and study the filler wire metallurgy for controlled cooling conditions after melting, enabling efficient mapping with prompt analysis of trends. Proposed is a reduced, though representative, process with more controllable conditions. Short lengths of filler wires are preplaced in a cavity, drilled into a base metal sheet. Irradiation by a pulsed laser beam melts the wire to generate a sample nugget. Pulse shaping influences the cooling rate, granting the ability to tailor weldament microstructures. The method is demonstrated for S1100QL steel and undermatched filler wire, to obtain high toughness for processes like laser-arc hybrid welding, where a representative thermal cycle is needed. For high toughness, a controlled amount of acicular ferrite and, in turn, nonmetallic inclusions is desirable. This “snapshot” method has revealed a characteristic histogram of inclusion sizes, for different pulse shapes. Additional information on the thermal cycle can be acquired by employing thermocouples, a pyrometer, or advanced methods like high speed imaging or modeling. The method offers a wide spectrum of variants and applications.

1.
A.
Mostafa
,
D.
Shahriari
,
I.
Rubio
,
V.
Brailovski
,
M.
Jahazi
, and
M.
Medraj
, “
Hot compression behavior and microstructure of selectively laser-melted IN718 alloy
,”
Int. J. Adv. Manuf. Technol.
96
,
371
385
(
2018
).
2.
S.
Moeinifar
,
A.
Kokabi
, and
H.
Hosseini
, “
Effect of tandem submerged arc welding process and parameters of Gleeble simulator thermal cycles on properties of the intercritically reheated heat affected zone
,”
Mater. Des.
32
,
869
876
(
2011
).
3.
Y.
Fu
,
H.
Zhang
,
G.
Wang
, and
H.
Wang
, “
Investigation of mechanical properties for hybrid deposition and micro-rolling of bainite steel
,”
J. Mater. Process. Technol.
250
,
220
227
(
2017
).
4.
C. R. N.
Nunura
,
C. A.
dos Santos
, and
J. A.
Spim
, “
Numerical-experimental correlation of microstructures, cooling rates and mechanical properties of AISI 1045 steel during the Jominy end-quench test
,”
Mater. Des.
76
,
230
243
(
2015
).
5.
X.
Wan
,
K.
Wu
,
K.
Nune
,
Y.
Li
, and
L.
Cheng
, “
In situ observation of acicular ferrite formation and grain refinement in simulated heat affected
,”
Sci. Technol. Weld. Joining
20
,
254
263
(
2015
).
6.
D.
Loder
and
S.
Michelic
, “
Systematic investigation of acicular ferrite formation on laboratory scale
,”
Mater. Sci. Technol.
33
,
162
171
(
2016
).
7.
J.
Sundqvist
,
A. F. H.
Kaplan
,
L.
Shachaf
, and
C.
Kong
, “
Analytical heat conduction modelling for shaped laser beams
,”
J. Mater. Process. Technol.
247
,
48
54
(
2017
).
8.
W.
Devesse
,
D.
De Baere
, and
P.
Guillaume
, “
High resolution temperature measurement of liquid stainless steel using hyperspectral imaging
,”
Sensors
17
,
91
104
(
2017
).
9.
K.
Abderrazak
,
W.
Kriaa
,
W. B.
Salem
,
H.
Mhiri
,
G.
Lepalec
,
M.
Autric
, “
Numerical and experimental studies of molten pool formation during an interaction of a pulse laser (Nd:YAG) with a magnesium alloy
,”
Opt. Laser Technol.
41
,
470
480
(
2009
).
10.
C.
Bertrand
and
A.
Poulon-Quintin
, “
Temporal pulse shaping: A key parameter for the laser welding of dental alloys
,”
Lasers Med. Sci.
30
,
1457
1464
(
2015
).
11.
A.
Kurc-Lisiecka
and
A.
Lisiecka
, “
Laser welding of the new grade of advanced high-strength steel Domex 960
,”
Mater. Technol.
51
,
199
204
(
2017
).
12.
A.
Kurc-Lisiecka
,
J.
Piwnik
, and
A.
Lisiecki
, “
Laser welding of new grade of advanced high-strength steel Strenx 1100 MC
,”
Arch. Metall. Mater.
62
,
1651
1657
(
2017
).
13.
D.
Loder
,
S. K.
Michelic
, and
C.
Bernhard
, “
Acicular ferrite formation and its influencing factors—A review
,”
J. Mater. Sci. Res.
6
,
24
43
(
2017
).
14.
D.
Sarma
,
A.
Karasev
, and
P.
Jönsson
, “
On the role of non-metallic inclusions in the nucleation of acicular ferrite in steels
,”
ISIJ Int.
49
,
1063
1074
(
2009
).
15.
M.
Fattahi
,
N.
Nabhani
,
M.
Hosseini
,
N.
Arabian
, and
E.
Rahimi
, “
Effect of Ti-containing inclusions on the nucleation of acicular ferrite and mechanical properties of multipass weld metals
,”
Micron
45
,
107
114
(
2013
).
16.
Z.
Tang
and
S.
Waldo
, “
The role of molybdenum additions and prior deformation on acicular ferrite formation in microalloyed Nb–Ti low-carbon line-pipe steels
,”
Mater. Charact.
59
,
717
728
(
2008
).
17.
I.
Madariaga
,
I.
Gutiérrez
,
C.
García de Andrés
, and
C.
Capdevila
, “
Acicular ferrite formation in a medium carbon steel with a two stage continuous cooling
,”
Scr. Mater.
41
,
229
235
(
1999
).
18.
J.
Lee
and
Y.
Pan
, “
The formation of intragranular acicular ferrite in simulated heat-affected zone
,”
ISIJ Int.
35
,
1027
1033
(
1995
).
19.
D.
Zhang
,
H.
Terasaki
, and
Y.
Komizo
, “
In-situ observation of the formation of intragranular acicular ferrite at non-metallic inclusions in C-Mn steel
,”
Acta Mater.
58
,
1369
1378
(
2010
).
20.
Y.
Kang
,
J.
Jang
,
J.
Park
, and
C.
Lee
, “
Influence of Ti on non-metallic inclusion formation and acicular ferrite
,”
Met. Mater. Int.
20
,
119
127
(
2014
).
You do not currently have access to this content.