A major part of additive manufacturing focuses on the fabrication of metallic parts in different fields of applications. Examples include components for jet engines and turbines and also implants in the medical sector. Titanium alloys represent a material group which is used cross-sectoral in a large number of applications. The present paper addresses the titanium aluminides in particular. These materials have a low density in combination with a comparatively high-temperature resistance [G. Sauthoff, Intermetallics (Wiley-VCH Verlag, Weinheim, Germany, 2008)]. Nevertheless, the laser material processing is rather challenging because of their distinct tendency to lamellar interface cracking. This requires tailored processing strategies and equipment [C. Leyens et al., in Ti-2015: The 13th World Conference on Titanium, Symposium 5. Intermetallics and MMCs, 16–20 August 2015, San Diego, CA (The Minerals, Metals & Materials Society, Pittsburgh, PA, 2016)]. This work focusses on tailored processing of titanium aluminides with focus on the process-dependent surface characteristics. This includes the as-built status for powder bed processing and direct laser metal deposition but also the surface modification via post and/or advanced machining. Finally, comprehensive characterization is performed using destructive as well as nondestructive testing methods. The latter includes 3D scanning, computed tomography, microscopic analysis, and, in particular, surface roughness measurements.

1.
G.
Sauthoff
,
Intermetallics
(
Wiley-VCH Verlag
, Weinheim, Germany,
2008
).
2.
C.
Leyens
 et al., “
Laser additive manufacturing of titanium alloys and titanium aluminides,”
in Ti-2015: The 13th World Conference on Titanium, Symposium 5. Intermetallics and MMCs, 16–20
August 2015, San Diego, CA (
The Minerals, Metals & Materials Society (TMS)
,
Pittsburgh, PA
,
2016
).
3.
H.
Clemens
and
S.
Mayer
, “
Design, processing, microstructure, properties, and applications of advanced intermetallic TiAl alloys
,”
Adv. Eng. Mater.
15
,
191
215
(
2013
).
4.
K.
Nishino
 et al., “
A high-performance alloy for turbocharger
,” in
Proceedings of 27th Annual Gas Turbine Congress, 14–19 November, 1999
(Kobe, Gas Turbine Society of Japan, Tokyo, Japan,
1999
). pp.
99
104
.
5.
S.
Takahashi
 et al., “
Development of materials processing technology for TiAl rotor
,”
IHI Tech. Rev.
38
,
108
112
(
1998
).
6.
MTU Aero Engines
, see http://www.mtu.de/fileadmin/EN/7_News_Media/1_Press/3_Press_kits/Paris_Air_Show_2017/Backgrounder/Titanaluminid_en.2017.final.docx for “Titanium Aluminide—MTU Aero Engines Develops New Turbine Blade Material” [Press release],
2017
.
7.
B.
Bewlay
,
M.
Weimer
,
T.
Kelly
,
A.
Suzuki
, and
P.
Subramanian
, “
The science, technology, and implementation of TiAl alloys in commercial aircraft engines
,”
MRS Proc.
1516
,
49
58
(
2013
).
8.
B. P.
Bewlay
,
S.
Nag
,
A.
Suzuki
, and
M. J.
Weimer
, “
TiAl alloys in commercial aircraft engines
,”
Mater. High Temp.
33
,
549
559
(
2016)
.
9.
S. C.
Huang
, U.S. patent 4,879,092 (
7 November 1989
).
10.
H.
Clemens
,
Titan Und Titanlegierungen
(Deutsche Gesellschaft für Materialkunde e.V.,
Köln
,
2018
).
11.
A.
Straubel
 et al.,
Gamma Titanium Aluminide Alloys
(
Wiley
, New York,
2014
), pp.
105
109
.
12.
Y.-W.
Kim
, “
Gamma titanium aluminides: Their status and future
,”
JOM
47
,
39
42
(
1995
).
13.
H.
Clemens
,
B.
Boeck
,
W.
Wallgram
,
T.
Schmoelzer
,
L. M.
Droessler
,
G. A.
Zickler
 et al., “
Experimental studies and thermodynamic simulations of phase transformations in Ti-(41-45)Al–4Nb–1Mo–0.1B alloys
,”
MRS Proc.
1128
,
1128-U03-06
(
2008
).
14.
S. P.
Brookes
,
Thermo-mechanical Fatigue Behaviour of the Near-[gamma]-titanium Aluminide Alloy TNB-V5 Under Uniaxial and Multiaxial Loading
(
Bundesanstalt für Materialforschung und-prüfung BAM
, Berlin,
2009
).
15.
T. R.
Mahale
, “
Electron beam melting of advanced materials and structure
,”
Ph.D. thesis
,
North Carolina State University
,
2009
.
16.
F.
Brückner
,
A.
Seidel
,
A.
Straubel
,
R.
Willner
,
C.
Leyens
, and
E.
Beyer
, “
Laser-based manufacturing of components using materials with high cracking susceptibility
,”
J. Laser Appl.
28
,
8
16
(
2016
).
17.
F.
Brückner
,
Modellrechnungen zum Einfluss der Prozessführung beim induktiv unterstützten Laser-Pulver-Auftragschweißen auf die Entstehung von thermischen Spannungen, Rissen und Verzug
(
Fraunhofer Verlag
,
Dresden
,
2011
).
18.
A.
Seidel
 et al., “
Added value by hybrid additive manufacturing and advanced manufacturing
,”
J. Laser Appl.
30
,
032301
(
2018
).
19.
N.
Nutal
,
P.
Rochus
,
J.-P.
Collette
,
J.
Crahay
,
M.
Larnicol
,
H.
Jochem
,
J.
Magnien
,
C.
Masse
,
O.
Rigo
,
J.-F.
Vanhumbeeck
, and
L.
Pambaguian
, “
Surface engineering for parts made by additive manufacturing
,” in
66th International Astronautical Congress, Jerusalem, Israel,
2015
.
20.
N. N.
Kumbhar
and
A.
Mulay
, “
Post processing methods used to improve surface finish of products which are manufactured by additive manufacturing (AM) technologies—A review
,”
J. Inst. Eng. India Ser. C
99
,
481
487
(
2016
).
21.
V.
Alfieri
,
P.
Argenio
,
F.
Caiazzo
, and
V.
Sergi
, “
Reduction of surface roughness by means of laser processing over additive manufacturing metal parts
,”
Materials
10
,
30
(
2017
).
22.
A. S. E.
Lopéz
,
S.
Saha
,
T.
Maiwald
,
J.
Moritz
,
S.
Polenz
,
A.
Marquardt
,
J.
Kaspar
,
T.
Finaske
,
M.
Riede
,
F.
Brueckner
, and
C.
Leyens
,
Hybrid Additive Manufacturing of Gamma Titanium Aluminide Space Hardware
(
Materials Science & Technology
,
Ohio
,
2018
).
You do not currently have access to this content.