Surface structuring is a versatile tool to modify the physical interplay at the interface to gaseous or liquid media. The two industrial used approaches are, in general, a chemical modification via coating or/and an introduced topography. Here, the structuring is carried out with a direct technique using an ultrashort pulsed laser with infrared and green wavelengths. Two hierarchical structural units are generated at the surface on copper, aluminum, and an amorphous alloy. Structures in the micrometer regime are produced via 2.5D layered laser ablation. Laser induced periodic surface structures (LIPSSs), an inherent phenomenon of self-generated periodic features, can be utilized to generate subdiffraction limit features. LIPSSs are demonstrated in the high spatial frequency regime with a periodicity of 320 and 600 nm for green and infrared radiations, accordingly. This work concerns the use of direct laser structuring for potential applications. Specifically, a change in the optical and wetting properties is addressed. Broadband absorbing behavior and static contact angles of up to 152° are reported. Laser ablation processes and experimental routines are presented to upscale the structuring process. Production rates up to 100 mm2/h for 2.5D ablation and 0.6 m2/h for LIPSSs can be reached.

1.
X.-M.
Li
,
D.
Reinhoudt
, and
M.
Crego-Calama
, “
What do we need for a superhydrophobic surface? A review on the recent progress in the preparation of superhydrophobic surfaces
,”
Chem. Soc. Rev.
36
,
1350
1368
(
2007
).
2.
W. L.
Barnes
,
A.
Dereux
, and
T. W.
Ebbesen
, “
Surface plasmon subwavelength optics
,”
Nature
424
,
824
830
(
2003
).
3.
D. R.
Rolison
, “
Catalytic nanoarchitectures—The importance of nothing and the unimportance of periodicity
,”
Science
299
,
1698
1701
(
2003
).
4.
E.
Celia
,
T.
Darmanin
,
E.
Taffin de Givenchy
,
S.
Amigoni
, and
F.
Guittard
, “
Recent advances in designing superhydrophobic surfaces
,”
J. Colloid Interface Sci.
402
,
1
18
(
2013
).
5.
V.
Zorba
,
L.
Persano
,
D.
Pisignano
,
A.
Athanassiou
,
E.
Stratakis
,
R.
Cingolani
,
P.
Tzanetakis
, and
C.
Fotakis
, “
Making silicon hydrophobic: wettability control by two-lengthscale simultaneous patterning with femtosecond laser irradiation
,”
Nanotechnology
17
,
3234
3238
(
2006
).
6.
P.
Bizi-Bandoki
,
S.
Benayoun
,
S.
Valette
,
B.
Beaugiraud
, and
E.
Audouard
, “
Modifications of roughness and wettability properties of metals induced by femtosecond laser treatment
,”
Appl. Surf. Sci.
257
,
5213
5218
(
2011
).
7.
J.
Bonse
,
R.
Koter
,
M.
Hartelt
,
D.
Spaltmann
,
S.
Pentzien
,
S.
Höhm
,
A.
Rosenfeld
, and
J.
Krüger
, “
Tribological performance of femtosecond laser-induced periodic surface structures on titanium and a high toughness bearing steel
,”
Appl. Surf. Sci.
336
,
21
27
(
2015
).
8.
M. C.
Lu
,
C. C.
Lin
,
C. W.
Lo
,
C. W.
Huang
, and
C. C.
Wang
, “
Superhydrophobic Si nanowires for enhanced condensation heat transfer
,”
Int. J. Heat Mass Transf.
111
,
614
623
(
2017
).
9.
C. S.
Sharma
,
C.
Stamatopoulos
,
R.
Suter
,
P. R.
von Rohr
, and
D.
Poulikakos
, “
Rationally 3D-textured copper surfaces for Laplace pressure imbalance-induced enhancement in dropwise condensation
,”
ACS Appl. Mater. Interfaces
10
,
29127
29135
(
2018
).
10.
P.
Vandrangi
,
S. C.
Gott
,
R.
Kozaka
,
V. G. J.
Rodgers
, and
M. P.
Rao
, “
Comparative endothelial cell response on topographically patterned titanium and silicon substrates with micrometer to sub-micrometer feature sizes
,”
PLoS ONE
9
,
e111465
(
2014
).
11.
E.
Martínez
,
E.
Engel
,
J. A.
Planell
, and
J.
Samitier
, “
Effects of artificial micro- and nano-structured surfaces on cell behaviour
,”
Ann. Anat.
191
,
126
135
(
2009
).
12.
T.
Nuutinen
,
M.
Silvennoinen
,
K.
Päiväsaari
, and
P.
Vahimaa
, “
Control of cultured human cells with femtosecond laser ablated patterns on steel and plastic surfaces
,”
Biomed. Microdevices
15
,
279
88
(
2013
).
13.
M. S.
Ahsan
,
F.
Ahmed
,
Y. G.
Kim
,
M. S.
Lee
, and
M. B. G.
Jun
, “
Colorizing stainless steel surface by femtosecond laser induced micro/nano-structures
,”
Appl. Surf. Sci.
257
,
7771
7777
(
2011
).
14.
Y.
Yang
,
J.
Yang
,
C.
Liang
, and
H.
Wang
, “
Ultra-broadband enhanced absorption of metal surfaces structured by femtosecond laser pulses
,”
Opt. Express
16
,
11259
11265
(
2008
).
15.
T. Q.
Qiu
and
C. L.
Tien
, “
Heat transfer mechanisms during short-pulse laser heating of metals
,”
J. Heat Transf.
115
,
835
(
1993
).
16.
B.
Chichkov
,
C.
Momma
, and
S.
Nolte
, “
Femtosecond, picosecond and nanosecond laser ablation of solids
,”
Appl. Phys. A
115
,
109
115
(
1996
).
17.
S. I.
Anisimov
and
S. I.
Anisimov
, “
Theory of ultrashort laser pulse interaction with a metal
,”
Proc. SPIE
192
,
192
203
(
1997
).
18.
Y.
Dong
and
P.
Molian
, “
Coulomb explosion-induced formation of highly oriented nanoparticles on thin films of 3C-SiC by the femtosecond pulsed laser
,”
Appl. Phys. Lett.
84
,
10
12
(
2004
).
19.
H.
Dachraoui
,
W.
Husinsky
, and
G.
Betz
, “
Ultra-short laser ablation of metals and semiconductors: Evidence of ultra-fast Coulomb explosion
,”
Appl. Phys. A Mater. Sci. Process.
83
,
333
336
(
2006
).
20.
D.
Wortmann
,
J.
Koch
,
M.
Reininghaus
,
C.
Unger
,
C.
Hulverscheidt
,
D.
Ivanov
, and
B. N.
Chichkov
, “
Experimental and theoretical investigation on fs-laser-induced nanostructure formation on thin gold films
,”
J. Laser Appl.
24
,
042017
(
2012
).
21.
E. G.
Gamaly
and
A. V.
Rode
, “
Physics of ultra-short laser interaction with matter: From phonon excitation to ultimate transformations
,”
Prog. Quantum Electron.
37
,
215
323
(
2013
).
22.
J. E.
Sipe
,
J. F.
Young
,
J. S.
Preston
, and
H. M.
Van Driel
, “
Laser-induced periodic surface structure. I. Theory
,”
Phys. Rev. B
27
,
1141
1154
(
1983
).
23.
J.
Bonse
,
M.
Munz
, and
H.
Sturm
, “
Structure formation on the surface of indium phosphide irradiated by femtosecond laser pulses
,”
J. Appl. Phys.
97
,
013538
(
2005
).
24.
S.
He
,
J. J.
Nivas
,
K. K.
Anoop
,
A.
Vecchione
,
M.
Hu
,
R.
Bruzzese
, and
S.
Amoruso
, “
Surface structures induced by ultrashort laser pulses: Formation mechanisms of ripples and grooves
,”
Appl. Surf. Sci.
353
,
1214
1222
(
2015
).
25.
J.
Bonse
,
A.
Rosenfeld
, and
J.
Krüger
, “
On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond-laser pulses
,”
J. Appl. Phys.
106
,
104910
(
2009
).
26.
J.
Bonse
,
S.
Hohm
,
S. V.
Kirner
,
A.
Rosenfeld
, and
J.
Kruger
, “
Laser-induced periodic surface structures—A scientific evergreen
,”
IEEE J. Sel. Top. Quantum Electron.
23
,
9000615
(
2017
).
27.
X. D.
He
,
K. E.
Torrance
,
F. X.
Sillion
, and
D. P.
Greenberg
, “
A comprehensive physical model for light reflection
,”
ACM SIGGR. Comput. Graph.
25
,
175
186
(
1991
).
28.
H. E.
Bennett
and
J. O.
Porteus
, “
Relation between surface roughness and specular reflectance at normal incidence
,”
J. Opt. Soc. Am.
51
,
123
(
1961
).
29.
J.
Gysel
, see github.com for “CAM 2.5D Laser Ablation V2.0” (
2017
).
30.
N.
Ackerl
,
M.
Warhanek
,
J.
Gysel
, and
K.
Wegener
, “Path calculation of 7-axis synchronous quasi-tangential laser manufacturing,” engrXiv Preprint (
2018
), p. 9, see https://engrxiv.org/gkhtq/.
31.
A. M.
Kietzig
,
S. G.
Hatzikiriakos
, and
P.
Englezos
, “
Patterned superhydrophobic metallic surfaces
,”
Langmuir
25
,
4821
4827
(
2009
).
32.
F.
Fraggelakis
,
G.
Mincuzzi
,
J.
Lopez
,
I.
Manek-Hönninger
, and
R.
Kling
, “
Texturing metal surface with MHz ultra-short laser pulses
,”
Opt. Express
25
,
18131
(
2017
).
33.
B.
Neuenschwander
,
B.
Jaeggi
,
M.
Schmid
, and
G.
Hennig
, “
Surface structuring with ultra-short laser pulses: Basics, limitations and needs for high throughput
,”
Phys. Procedia
56
,
1047
1058
(
2014
).
You do not currently have access to this content.