Additive manufacturing design rules are different from those of conventional fabrication techniques. These allow geometries that would not be possible to achieve otherwise. One example of application is the integration of functional parts as part of the manufacturing process. Conceivable applications range from mechanical functions like integration of moving parts or thermodynamic functions, for example, cooling channels or incorporation of electric circuits for electrical functionalization [J. Glasschroeder, E. Prager, and M. F. Zaeh, Rapid Prototyping J.21, 207–215 (2015)]. Nevertheless, the potential of functional integration using powder-bed processes is far from being exhausted. The present approach addresses the generation of inner cavities and internal structures of titanium-based parts or components by the use of selective laser melting. This paper focusses on the investigation of voids and cavities regarding their capabilities to add new functions to the material. To this end, comprehensive characterization is performed using destructive as well as nondestructive testing methods. These include 3D scanning, computed tomography, and surface roughness measurements as well as microscopic analysis. Voids and cavities were filled with different thermoplastic materials, followed by the qualitative assessment of the mold filling and resulting material properties. Finally, applications are derived and evaluated with respect to the field of lightweight design or damping structures.

1.
J.
Glasschroeder
,
E.
Prager
, and
M. F.
Zaeh
, “
Powder-bed-based 3D-printing of function integrated parts
,”
Rapid Prototyping J.
21
,
207
215
(
2015
).
2.
D.
Türk
,
R.
Kussmaul
,
M.
Zogg
,
C.
Klahn
,
A. B.
Spierings
,
H.
Könen
,
P.
Ermanni
, and
A.
Meboldt,
Additive manufacturing with composites for integrated aircraft structures
,” in
SAMPE 2016
,
Long Beach, CA, USA, 23–26 May 2016
(
Society of the Advancement of Material and Process Engineering
,
Long Beach
,
2016
).
3.
Fraunhofer IAPT
, see https://www.iapt.fraunhofer.de/de/Branchenloesungen/aerospace.html for “Aerospace. Additive manufacturing in aviation,”
2018
.
4.
M.
Heyde
, see https://www.fraunhofer.de/en/research/current-research/additive-manufacturing.html for “New Products, One Layer At a Time. Additive Manufacturing,”
2018
.
5.
N.
Guo
and
M. C.
Leu
, “
Additive manufacturing Technology, applications and research needs
,”
Front. Mech. Eng.
8
,
215
243
(
2013
).
6.
T.
Reiher
and
R.
Koch
, “
Product optimization with and for additive manufacturing
,” in
Proceedings of the 27th Annual International Solid Freeform Fabrication Symposium—An Additive Manufacturing Conference Reviewed Paper, 10 August 2016, Austin, TX
(
Solid Freeform Fabrication Symposium
,
Austin
,
2016
).
7.
S.-K.
Cho
,
H.-J.
Kim
, and
S.-H.
Chang
, “
The application of polymer composites to the table-top machine tool components for higher stiffness and reduced weight
,”
Compos. Struct.
93
,
492
501
(
2011
).
8.
D.
Espalin
,
D. W.
Muse
,
E.
MacDonald
, and
R. B.
Wicker
, “
3D Printing multifunctionality. Structures with electronics
,”
Int. J. Adv. Manuf. Technol.
72
,
963
978
(
2014
).
9.
D.
Lehmhus
,
C.
Aumund-Kopp
,
F.
Petzoldt
,
D.
Godlinski
,
A.
Haberkorn
,
V.
Zöllmer
, and
M.
Busse
, “
Customized smartness: a survey on links between additive manufacturing and sensor integration
,”
Proc. Technol.
26
,
284
301
(
2016
).
10.
D.-A.
Türk
,
R.
Kussmaul
,
M.
Zogg
,
C.
Klahn
,
B.
Leutenecker-Twelsiek
,
M.
Meboldt
, “
Composites part production with additive manufacturing technologies
,”
Proc. CIRP
66
,
306
311
(
2017
).
11.
EOS
, see https://www.eos.info/additive_manufacturing/for_technology_interested for “Additive Manufacturing, Laser-Sintering and industrial 3D printing - Benefits and Functional Principle.”
12.
See https://www.iws.fraunhofer.de/en/pressandmedia/press_releases/2017/press_release_2017-02.html for
Dresdner scientists print tomorrow’s world
, Press release (Nr. II)—Fraunhofer IWS/7 February 2017.
13.
C.
Dordlofva
,
A.
Lindwall
, and
P.
Törlind
, “
Opportunities and challenges for additive manufacturing in space applications
,” in
NordDesign
,
Trondheim, Norway
, 10–12 August 2016 (
NordDesign
,
Trondheim
,
2016
).
14.
A.
Uriondo
,
M.
Esperon-Miguez
, and
S.
Perinpanayagam
, “
The present and future of additive manufacturing in the aerospace sector. A review of important aspects,”
Proc. Inst. Mech. Eng. Part G J Aerospace Eng.
229
,
2132
2147
(
2014
).
15.
S. N.
Esfahani
,
M.
Taheri Andani
,
N.
Shayesteh Moghaddam
,
R.
Mirzaeifar
, and
M.
Elahinia
, “
Independent tuning of stiffness and toughness of additively manufactured titanium-polymer composites. Simulation, fabrication, and experimental studies
,”
J. Mat. Process. Technol.
238
,
22
29
(
2016
).
16.
M.
Grujicic
,
V.
Sellappan
,
M. A.
Omar
,
N.
Seyr
,
A.
Obieglo
,
M.
Erdmann
, and
J.
Holzleitner
, “
An overview of the polymer-to-metal direct-adhesion hybrid technologies for load-bearing automotive components
,”
J. Mat. Process. Technol.
197
,
363
373
(
2008
).
17.
C.
Emmelmann
,
P.
Sander
,
J.
Kranz
, and
E.
Wycisk
, “
Laser additive manufacturing and bionics. redefining lightweight design
,”
Phys. Proc.
12
,
364
368
(
2011
).
18.
C.
Emmelmann
,
M.
Petersen
,
J.
Kranz
, and
E.
Wycisk
, “
Bionic lightweight design by laser additive manufacturing (LAM) for aircraft industry
,”
Proc. SPIE
8065
,
80650L
(
2011
).
19.
M.
Altan
,
M.
Bayraktar
, and
B.
Yavuz
, “
Manufacturing polymer/metal macro-composite structure for vibration damping
,”
Int. J. Adv. Manuf. Technol.
86
,
2119
2126
(
2016
).
20.
V.
Mager
,
V.
Saplontai
,
M.
Saplontai
,
D.
Leordean
, and
N.
Balc
, “
Research on infiltrating biocompatible fillers to produce composite implants
,”
Acad. J. Manufact. Eng.
11
,
98
101
(
2013
).
21.
J. F.
Wang
,
X. Y.
Liu
, and
B.
Luan
, “
Fabrication of Ti/polymer biocomposites for load-bearing implant applications
,”
J. Mat. Process. Technol.
197
,
428
433
(
2008
).
22.
See http://www.yomura.com.tw/overmolding.html for “Over Injection Mold.”
23.
O. J.
Zoellner
and
J. A.
Evans
, “
Plastic-metal hybrid. A new development in the injection molding technology
,” in
ANTEC 2002 Annual Technical Conference
,
San Francisco, CA,
5–9 May 2002 (SPE, Brookfield,
2002
).
24.
B.
Vandenbroucke
and
J.-P.
Kruth
, “
Selective laser melting of biocompatible metals for rapid manufacturing of medical parts
,” in
17th Solid Freeform Fabrication Symposium, Austin, TX, 14–16 August 2006
(
Solid Freeform Fabrication Symposium
,
Austin
,
2006
), pp.
148
159
.
25.
J.
Pakkanen
,
F.
Calignano
,
F.
Trevisan
,
M.
Lorusso
,
E. P.
Ambrosio
,
D.
Manfredi
,
P.
Fino
, “
Study of internal channel surface roughnesses manufactured by selective laser melting in aluminum and titanium alloys
,”
Metall. Mat. Trans. A
47
,
3837
3844
(
2016
).
26.
M.
Tsukanaka
,
S.
Fujibayashi
,
M.
Takemoto
,
T.
Matsushita
,
T.
Kokubo
,
T.
Nakamura
,
K.
Sasaki
, and
S.
Matsuda
, “
Bioactive treatment promotes osteoblast differentiation on titanium materials fabricated by selective laser melting technology
,”
Dental Mater. J.
35
,
118
125
(
2016
).
27.
A. B.
Spierings
,
N.
Herres
, and
G.
Levy
, “
Influence of the particle size distribution on surface quality and mechanical properties in AM steel parts
,”
Rapid Prototyping J.
17
,
195
202
(
2011
).
28.
J. M.
Anderson
and
M. S.
Shive
, “
Biodegradation and biocompatibility of PLA and PLGA microspheres
,”
Adv. Drug Deliv. Rev.
28
,
5
24
(
1997
).
29.
N.
Strumberger
,
A.
Gospocic
, and
C.
Bartulic
, “
Polymeric Materials in Automobiles
,”
Promet Traffic Traffico
17
,
149
160
(
2005
).
30.
R.
Falck
,
S. M.
Goushegir
,
J. F.
dos Santos
, and
S. T.
Amancio-Filho
, “
AddJoining A novel additive manufacturing approach for layered metal-polymer hybrid structures
,”
Mater. Lett.
217
,
211
214
(
2018
).
31.
Y.
Huang
,
S. H.
Yang
,
X. U.
Lei
,
G. E.
Xinling
,
S. U.
Zhengtao
, and
W. A.
Jinghe
, “
Research and application progress of silicone rubber materials in aviation
,”
J. Aeronaut. Mater.
36
,
79
91
(
2016
).
32.
J. K.
Nielsen
and
J.
Maiboe
, “
Epofix and vacuum: An easy method to make casts of hard substrates
,”
Palaeontol. Electron.
3
,
1
10
(
2000
).
33.
J.
Jarzynski
, “
Mechanisms of sound attenuation in materials
,” in
Sound and Vibration Damping with Polymers
, ACS Symposium Series 424 (
American Chemical Society
,
Washington, DC
,
1990
).
You do not currently have access to this content.