Subjects of this work are the mechanical, geometrical, and microstructural properties of hybrid parts from Ti6Al4V sheet metal bending and laser beam melting (LBM) in dependence of the extended LBM process parameters. In this context, the effects of different laser exposure strategies for the interface area to increase the reproducibility of the joint strength are investigated. Also, the effect of varying scan patterns and two different laser beam sources (Gaussian beam profile, spot size: 120 μm, maximum laser power: 400 W and irregular beam profile, spot size: 680 μm, maximum laser power: 1000 W) on the LBM process and the resulting distortion of the parts are examined. Furthermore, three heat-treatment temperatures at 450, 850, and 1050 °C were applied to the hybrid samples, resulting in variable microstructures and different mechanical properties for the sheet metal body and the LBM structure.

1.
B.
Ilschner
and
R. F.
Singer
,
Werkstoffwissenschaften und Fertigungstechnik
(
Springer
, Heidelberg,
2005
).
2.
C. Y.
Yap
,
C. K.
Chua
,
Z. L.
Dong
,
Z. H.
Liu
,
D. Q.
Zhang
,
L. E.
Loh
, and
S. L.
Sing
, “
Review of selective laser melting: Materials and applications
,”
Appl. Phys. Rev.
2
,
041101
(
2015
).
3.
SLM Solutions GmbH
,
2017
, see https://slm-solutions.de/sites/default/files/downloads/201en171023-01-001-powder_web.pdf for “SLM Solutions—3D Metals” (last accessed May 9, 2018).
4.
Y.
Zhai
,
H.
Galarraga
, and
D. A.
Lados
, “
Microstructure evolution, tensile properties, and fatigue damage mechanisms in Ti-6Al-4V alloys fabricated by two additive manufacturing techniques
,”
Procedia Eng.
114
,
658
666
(
2015
).
5.
V.
Chastand
,
A.
Tezenas
,
Y.
Cadoret
,
P.
Quaebebeur
,
W.
Maia
, and
E.
Charkaluk
, “
Fatigue characterization of Titanium Ti-6Al-4V samples produced by additive manufacturing
,”
Procedia Struct. Integr.
2
,
3168
3176
(
2016
).
6.
Concept Laser GmbH
,
2018,
see https://www.concept-laser.de/produkte/maschinen.html; accessed 25 May 2018.
8.
Concept Laser GmbH
,
2018
, see https://www.concept-laser.de/home.html; accessed 18 May 2018.
9.
T.
Wohlers
,
Wohlers Report 2016
(
Wohlers Associates
, Fort Collins,
2016)
.
10.
S.
Bremen
,
D.
Buchbinder
,
W.
Meiners
, and
K.
Wissenbach
, “
Mit selective laser melting auf dem Weg zur Serienproduktion?
,”
Lasertechnik J.
6
,
24
28
(
2011
).
11.
F.
Huber
,
M.
Rasch
,
L.
Butzhammer
,
M.
Karg
, and
M.
Schmidt
, “
Strahlschmelzen von Metallen mit unterschiedlichen Intensitäten und Belichtungsstrategien
,” in
Proceedings of Industriekolloquium of CRC 814—Additive Manufacturing
, Nürnberg, Germany, 12 December 2017 (CRC 814, Erlangen,
2017
).
13.
I.
Sizove
and
M.
Bambach
, “
Hot workability and microstructure evolution of pre-forms for forgings produced by additive manufacturing
,” in
Proceedings of International Conference on the Technology of Plasticity
, Cambridge, UK, 17–22 September 2017 (Elsevier, Amsterdam,
2017
).
14.
D.
Hagedorn-Hansen
,
M.-B.
Bezuidenhout
,
D.
Dimitrov
, and
G. A.
Oosthuizen
, “
The effects of selective laser melting scan strategies on deviation of hybrid parts
,”
S. Afr. J. Ind. Eng.
28
,
200
212
(
2017
).
15.
A.
Schaub
,
M.
Merklein
,
V.
Jüchte
,
R. F.
Singer
, and
C.
Körner
, “
Funktionsintegration durch die Kombination additive Fertigungsprozesse mit der Blechumformung
,” in
Proceedings of Industriekolloqium of CRC 814—Additive Manufacturing
,
Nürnberg, Germany, 12 December 2013
(CRC 814, Erlangen,
2013
).
16.
A.
Schaub
,
B.
Ahuja
,
M.
Karg
,
M.
Schmidt
, and
M.
Merklein
, “
Fabrication and characterization of laser beam melted Ti-6Al-4V geometries on sheet metal
,” in
DDMC—Direct Digital Manufacturing Conference
,
Berlin, Germany, 12–13 March 2013
(Frainhofer Generativ, Berlin,
2014
).
17.
L.
Butzhammer
,
P.
Dubjella
,
F.
Huber
,
M.
Aumüller
,
A.
Baum
,
M.
Merklein
, and
M.
Schmidt
, “
Experimental investigation of a process chain combining sheet metal bending and laser beam melting of Ti-6Al-4V
,” in
Proceedings of World of Photonics Congress: Lasers in Manufacturing—LiM
,
Munich, Germany, June 26–29, 2017
(Wissenschafltiche Gesellschaft Lasertechnik e.V., Erlangen,
2017
).
18.
J.-P.
Kruth
,
J.
Deckers
,
E.
Yasa
, and
E.
Wauthlé
, “
Assessing and comparing influencing factors of residual stresses in selective laser melting using a novel analysis method
,”
J. Eng. Manuf.
226
,
980
991
(
2012
).
19.
DIN 17851
, Titanlegierungen—Chemische Zusammensetzung, Beuth (
1990
).
20.
A.
Schaub
,
V.
Juechter
,
R. F.
Singer
, and
M.
Merklein
, “
Characterization of hybrid components consisting of SEBM additive structures and sheet metal of alloy Ti-6Al-4V
,”
Key Eng. Mater.
611–612
,
609
614
(
2014
).
21.
B.
Vrancken
,
L.
Thijs
,
J.-P.
Kruth
, and
J.
Van Humbeeck
, “
Heat treatment of Ti6Al4V produced by selective laser melting: Microstructure and mechanical properties
,”
J. Alloys Compd.
541
,
177
185
(
2012
).
22.
N.
Kotkunde
,
A. D.
Deole
,
A. K.
Gupta
, and
S. K.
Singh
, “
Comparative study of constitutive modeling for Ti–6Al–4V alloy at low strain rates and elevated temperatures
,”
Mater. Des.
55
,
999
1005
(
2014
).
23.
P.
Mercelis
and
J.-P.
Kruth
, “
Residual stresses in selective laser sintering and selective laser melting
,”
Rapid Prototyping J.
5
,
254
265
(
2006
).
24.
N.
Steffansson
and
L.
Semiatin
, “
Mechanisms of globularization of Ti-6Al-4V during static heat treatment
,”
Metall. Mater. Trans. A
3
,
691
698
(
2003
).
You do not currently have access to this content.