Nowadays, the market for electrical vehicles grows due to government funded projects. Consequently, the demand for high quality batteries rises as well. For increasing the output and quality of batteries, innovative production technologies and materials are needed. Note that one of these innovative technologies is remote laser cutting. Multiple advantages arise using remote laser cutting for sizing battery materials. A high rate of contour flexibility and cutting velocities of up to several hundred meters per minute is thus achievable. This research shows cutting velocities for foil materials up to 600 m/min. Next to the high cutting velocities, remote laser cutting produces less spatter formation, a consequence which increases the quality of the separation technology, constantly. The spatter formation occurring in the form of spherical melt attachments on the foil's top surface could pierce through the insulator and lead to short circuits. This research reveals that spatter formation could be reduced to less than 10 μm in diameter with choosing the correct process setup. In addition, the delamination at the cutting edge, another important quality aspect, is decreased to a value of 5 μm. In the future, different material compositions and laser wavelengths will be examined. Shorter laser wavelengths may provide a higher absorption, especially when copper foils are utilized as a current collector.

1.
Grand View Research
,
Lithium-Ion Battery Market: Market, By Product (Lithium Cobalt Oxide (LCO), Lithium Iron Phosphate (LFP), Lithium Nickel Cobalt Aluminum Oxide (NCA), Lithium Manganese Oxide LMO, Lithium Titanate Lithium Nickel Manganese Cobalt, USA, 2017
.
2.
BMWi
, Elektromobilität – Baustein einer nachhaltigen klima- und umweltverträglichen Mobilität, Berlin.
3.
M.
O’Sullivan
,
D.
Edler
,
P.
Bickel
 et al. Bruttobeschäftigung durch erneuerbare Energien in Deutschland im Jahr 2013: -eine erste Abschätzung- (Bundesministeriums für Wirtschaft und Energie, Berlin,
2014)
.
4.
T.
Schlick
,
G.
Hertel
,
B.
Hagemann
,
E.
Maiser
, and
M.
Kramer
.,
Zukunftsfeld Elektromobilität: Chancen und Herausforderungen für den deutschen Maschinenund Anlagenbau
(
VDMA
, Frankfurt,
2011
).
5.
P.
Kleine-Möllhoff
,
H.
Benad
,
F.
Beilard
,
M.
Esmail
, and
M.
Knöll
,
Die Batterie als Schlüsseltechnologie für die Elektromobilität der Zukunft: Herausforderungen - Potenziale - Ausblick
(
ESB Business School
,
Reutlingen
,
2012
).
6.
DeLIZ Produktionstechnisches Demonstrationszentrum für Lithium-Ionen-Zellen
, edited by
A.
Techel
(
Fraunhofer Verlag
,
Dresden
,
2011
).
7.
M. R.
Kronthaler
,
F.
Schloegl
,
J.
Kurfer
,
R.
Wiedenmann
,
M. F.
Zaeh
, and
G.
Reinhart
, “
Laser cutting in the production of lithium ion cells
,”
Phys. Procedia
39
,
213
224
(
2012
).
8.
Dongkyoung
Lee
,
Rahul
Patwa
,
Hans
Herfurth
, and
J.
Mazumder
, “
Computational and experimental studies of laser cutting of the current collectors for lithium-ion batteries
,”
J. Power Sources
210
,
327
338
(
2012
).
9.
D.
Lee
,
R.
Patwa
,
H.
Herfurth
, and
J.
Mazumder
, “
High speed remote laser cutting of electrodes for lithium-ion batteries: Anode
,”
J. Power Sources
240
,
368
380
(
2013
).
10.
Matthias
Luetke
,
Volker
Franke
,
Anja
Techel
,
T.
Himmer
,
U.
Klotzbach
,
A.
Wetzig
, and
E.
Beyer
, “
A comparative study on cutting electrodes for batteries with lasers
,”
Phys. Procedia
12
,
286
291
(
2011
).
11.
Adrian H. A.
Lutey
,
Alessandro
Fortunato
,
Alessandro
Ascari
,
S.
Carmignato
, and
C.
Leone
, “
Laser cutting of lithium iron phosphate battery electrodes_Characterization of process efficiency and quality
,”
Opt. Laser Technol.
65
,
164
174
(
2015
).
12.
Adrian H. A.
Lutey
, “
High speed pulsed laser cutting of Li-ion battery electrodes
,”
Opt. Laser Technol.
94
,
90
96
(
2016
).
13.
Adrian H. A.
Lutey
,
Alessandro
Fortunato
,
Simone
Carmignato
,
A.
Ascari
,
E.
Liverani
, and
G.
Guerrini
, “
Quality and productivity considerations for laser cutting of LiFePO4 and LiNiMnCoO2 battery electrodes
,”
Procedia CIRP
42
,
433
438
(
2017
).
14.
M. F.
Zaeh
,
J.
Moesl
,
J.
Musiol
, and
F.
Oefele
, “
Material processing with remote technology revolution or evolution?
,”
Phys. Procedia
5
19
33
(
2010
).
15.
J.
Eichler
and
H.
Eichler
,
Laser: Bauformen, Strahlführung, Anwendungen
(
Springer
,
Berlin
,
2003
).
16.
H.
Hügel
and
T.
Graf
,
Laser in der Fertigung: Strahlquellen, Systeme, Fertigungsverfahren
(
VIEWEG + Teubner
,
Wiesbaden
,
2009
).
17.
G.
Staupendahl
and
K.
Schindler
,
Lasertechnik und ihre Anwendungen in derMaterialbearbeitung, Vorlesungsskript
(
Friedrich-Schiller-Universität
,
Jena
,
2003
).
18.
W.
Steen
and
J.
Mazumder
,
Laser Material Processing
(
Springer
,
London
,
2010
).
19.
M.
Lütke
, “
Entwicklung des Remote-Laserstrahlschneidens metallischer Werkstoffe,” Dissertation, Technische Universität Dresden, 2011
.
20.
R.
Baumann
,
P.
Herwig
,
A.
Wetzig
, and
E.
Beyer
, “
Investigations of corrosion resistance of laser separated open cell metal
,”
Adv. Eng. Mater.
19
(
2017
).
21.
R.
Baumann
,
P.
Herwig
,
A.
Wetzig
, and
E.
Beyer
, “
Remote laser cutting of open cell foams—Processes for the factory of the future
,”
Sci. Technol. Mater.
30
,
60
66
(
2018
).
You do not currently have access to this content.