For most applications, the benefit of the burst mode can easily be explained: the energy of each pulse in an n-pulse burst is n times smaller compared to single pulses with identical average power and repetition rate. Thus, the peak fluence of each pulse is nearer the optimum value and the removal rate is therefore increased. It is generally not as high as it would be if single pulses with identical peak fluence but n times higher repetition rate could be applied. However, there are situations where the burst mode can lead to higher efficiencies, i.e., specific removal rates and a real increase in the removal rate can be obtained. For copper at 1064 nm and with a 3-pulse burst, the specific removal rate amounts to about 118% of a single pulse. For silicon, a huge increase from 1.62 to 4.92 μm3/μJ was observed by applying an 8-pulse burst. Based on calorimetric measurements on copper and silicon, the increased absorptance resulting from a rougher surface is identified as an effect which could be responsible for this increase of the specific removal rate. Thus, the burst mode is expected to be able to influence surface parameters in a way that higher efficiencies of the ablation process can be realized.

1.
B. N.
Chichkov
,
C.
Momma
,
S.
Nolte
,
F.
von Alvensleben
, and
A.
Tünnermann
, “
Femtosecond, picosecond and nanosecond laser ablation of solids
,”
Appl. Phys. A
63
,
109
115
(
1996
).
2.
D.
Breitling
,
A.
Ruf
, and
F.
Dausinger
, “
Fundamental aspects in machining of metals with short and ultrashort laser pulses
,”
Proc. SPIE
5339
,
49
63
(
2004
).
3.
F.
Dausinger
,
H.
Hügel
, and
V.
Konov
, “
Micromachining with ultrashort laser pulses: From basic understanding to technical applications
,”
Proc. SPIE
5147
,
106
115
(
2003
).
4.
J.
Meijer
,
K.
Du
,
A.
Gillner
,
D.
Hoffmann
,
V. S.
Kovalenko
,
T.
Masuzawa
,
A.
Ostendorf
,
R.
Poprawe
, and
W.
Schulz
, “
Laser machining by short and ultrashort pulses, state of the art and new opportunities in the age of the photons
,”
Ann. CIRP
51
,
2
(
2002
).
5.
G.
Raciukaitis
,
M.
Brikas
,
P.
Gecys
,
B.
Voisiat
, and
M.
Gedvilas
, “
Use of high repetition rate and high power lasers in microfabrication: How to keep the efficiency high?
,”
J. Laser Micro/Nanoeng.
4
,
186
191
(
2009
).
6.
B.
Neuenschwander
,
G.
Bucher
,
C.
Nussbaum
,
B.
Joss
,
M.
Muralt
,
U.
Hunziker
, and
P.
Schuetz
, “
Processing of metals and dielectric materials with ps-laser pulses: results, strategies, limitations and needs
,”
Proc. SPIE
7584
,
75840R
(
2010
).
7.
B.
Jaeggi
,
B.
Neuenschwander
,
M.
Schmid
,
M.
Muralt
,
J.
Zuercher
, and
U.
Hunziker
, “
Influence of the pulse duration in the ps-regime on the ablation efficiency of metals
,”
Phys. Procedia
12B
,
164
171
(
2011
).
8.
J.
Lopez
,
A.
Lidolff
,
M.
Delaigue
,
C.
Hönninger
,
S.
Ricaud
, and
E.
Mottay
, in
Proceedings of ICALEO M401
(ICALEO, Orlando, FL,
2011
).
9.
B.
Neuenschwander
,
B.
Jaeggi
, and
M.
Schmid
, in
Proceedings of ICALEO M1004
(ICALEO, Anaheim, CA,
2012
).
10.
B.
Neuenschwander
,
B.
Jaeggi
,
M.
Zimmermann
,
V.
Markovic
,
B.
Resan
,
K.
Weingarten
,
R.
de Loor
, and
L.
Penning
, “
Laser surface structuring with 100 W of average power and sub-ps pulses
,”
J. Laser Appl.
28
,
022506
(
2016
).
11.
F.
Bauer
,
A.
Michalowski
,
T.
Kiedrowski
, and
S.
Nolte
, “
Heat accumulation in ultra-short pulsed scanning laser ablation of metals
,”
Opt. Express
23
,
1035
1043
(
2015
).
12.
B.
Jaeggi
,
S.
Remund
,
R.
Streubel
,
B.
Goekce
,
S.
Barcikowski
, and
B.
Neuenschwander
, “
Laser micromachining of metals with ultra-short pulses: Factors limiting the scale-up process
,”
J. Laser Micro/Nanoeng.
12
,
267
273
(
2017
).
13.
R.
Knappe
,
H.
Haloui
,
A.
Seifert
,
A.
Weis
, and
A.
Nebel
, “
Scaling ablation rates for picosecond lasers using burst micromachining
,”
Proc. SPIE
7585
,
75850H
(
2010
).
14.
T.
Kramer
,
Y.
Zhang
,
S.
Remund
,
B.
Jaeggi
,
A.
Michalowski
,
L.
Grad
, and
B.
Neuenschwander
, “
Increasing the specific removal rate for ultra-short pulsed laser-micromachining by using pulse bursts
,”
J. Laser Micro/Nanoeng.
12
,
107
114
(
2017
).
15.
B.
Jaeggi
,
S.
Remund
,
Y.
Zhang
,
T.
Kramer
, and
B.
Neuenschwander
, “
Optimizing the specific removal rate with the burst mode under varying conditions
,”
J. Laser Micro/Nanoeng.
12
,
258
266
(
2017
).
16.
B.
Jaeggi
,
L.
Cangueiro
,
D.
Bruneel
,
J. A.
Ramos de Campos
,
C.
Hairaye
, and
B.
Neuenschwander
, “
Micromachining using pulse bursts: Influence of the pulse duration and the number of pulses in the burst on the specific removal rate
,”
Proc. SPIE
10519
,
1051905
(
2018
).
17.
F.
Bauer
, “
Grundlegende Untersuchungen zum Abtragen von Stahl mut ultraurzen Laserpulsen
,”
Ph.D. thesis
,
Friedrich-Schiller-Universitaet Jena, Physikalisch-Atronomische Fakzultät
,
2018
.
18.
D. J.
Foerster
,
S.
Faas
,
S.
Gröninger
,
F.
Bauer
,
A.
Michalowski
, and
T.
Graf
, “
Shielding effects and re-deposition of material during processing of metals with bursts of ultra-short laser pulses
,”
Appl. Surf. Sci.
440
,
926
931
(
2018
).
19.
M. E.
Povarnitsyn
,
T. E.
Itina
,
K. V.
Khishchenko
, and
P. T.
Levashov
, “
Suppression of ablation in femtosecond double-pulse experiments
,”
Phys. Rev. Lett.
103
,
195002
(
2009
).
20.
C.
Kerse
,
H. J.
Kalaycioglu
,
P.
Elahi
,
B.
Cetin
,
D. K.
Kesimn
,
Ö
Akcaalan
,
S.
Yavas
,
M. D.
Asik
,
B.
Öktem
,
H.
Hoogland
,
R.
Holzwarth
, and
F.
Ömer Ilday
, “
Ablation-cooled material removal with ultrafast bursts of pulses
,”
Nature
537
,
84
88
(
2016
).
21.
B.
Jaeggi
,
B.
Neuenschwander
,
U.
Hunziker
,
J.
Zuercher
,
T.
Meier
,
M.
Zimmermann
,
K. H.
Selbmann
, and
G.
Hennig
, “
Ultra-high-precision surface structuring by synchronizing a galvo scanner with an ultra-short-pulsed laser system in MOPA arrangement
,”
Proc. SPIE
8243
,
82430K
(
2012
).
22.
M.
Zimmermann
,
B.
Jaeggi
, and
B.
Neuenschwander
, “
Improvements in ultra-high precision surface structuring using synchronized galvo or polygon scanner with a laser system in MOPA arrangement
,”
Proc. SPIE
9350
,
935016
(
2015
).
23.
B.
Neuenschwander
,
T.
Kramer
,
B.
Lauer
, and
B.
Jaeggi
, “
Burst mode with ps- and fs-pulses: Influence on the removal rate, surface quality, and heat accumulation
,”
Proc. SPIE
9350
,
93500U
(
2015
).
24.
See refractiveindex.info for “Refractive index database.”
25.
B.
Jaeggi
,
D. J.
Foerster
,
R.
Weber
, and
B.
Neuenschwander
, “
Residual heat during laser ablation of metals with bursts of ultra-short pulses
,”
Adv. Opt. Technol.
7
,
175
182
(
2018
).
26.
Y.
Ren
,
J. K.
Chen
, and
Y.
Zhang
, “
Optical properties and thermal response of copper films induced by ultrashort-pulsed lasers
,”
J. Appl. Phys.
110
,
113102
(
2011
).
27.
S. Y.
Wang
,
Y.
Ren
,
C. W.
Cheng
,
J. K.
Chen
, and
D. Y.
Tzou
, “
Micromachining of copper by femtosecond laser pulses
,”
Appl. Surf. Sci.
265
,
302
308
(
2013
).
You do not currently have access to this content.