In the last few years, commercially available ultrashort pulsed (usp) laser systems have reached average powers of several 100 W, which makes them also interesting for enhancing traditional applications. For example, laser drilling, a conventionally melt-dominated process, would benefit from the advantages of an usp ablation process. Due to the small processing area in laser drilling, substantial heat accumulates already at a few Watts of average power. This heat accumulation creates melt but also increases the mean ablation rate at least 1 order of magnitude and could lead to a productive drilling process. In this study, the increase of the mean ablation rate in percussion drilling due to heat accumulation is examined for various metals and sample thicknesses for high average powers of up to 300 W and a pulse energy in the milliJoule range. Those investigations have not yet been performed in such detail. It is shown that by doubling the pulse energy the drilling time can be decreased by 2 orders of magnitude due to heat accumulation. This behavior is valid for various metals like steel or aluminum, despite their varying material parameters. By analyzing the influence of different repetition rates and focal diameters, it is shown that the predominant parameter to characterize the heat accumulation is the average power. No significant difference is observed if the average power starting from 20 W is set up by a high pulse energy or repetition rate. Stainless steel has a different behavior compared to the other investigated metals when the pulse duration is changed from 2 to 20 ps, which is caused by a modified plasma generation. For stainless steel, the drilling time is found to be describable with one empirical formula for the entire range of examined average power and sample thickness.

1.
C.
Momma
,
B. N.
Chichkov
,
S.
Nolte
,
F.
von Alvensleben
,
A.
Tünnermann
,
H.
Welling
, and
B.
Wellegehausen
, “
Short-pulse laser ablation of solid targets
,”
Opt. Commun.
129
,
134
142
(
1996
).
2.
C.
Momma
,
S.
Nolte
,
B. N.
Chichkov
,
F.
von Alvensleben
, and
A.
Tünnermann
, “
Precise micromachining with femtosecond laser pulses
,”
Laser Optoelektronik
3
,
82
89
(
1997
).
3.
R.
Le Harzic
,
D.
Breitling
,
M.
Weikert
,
S.
Sommer
,
C.
Föhl
,
S.
Valette
,
C.
Donnet
,
E.
Audouard
, and
F.
Dausinger
, “
Pulse width and energy influence on laser micromachining of metals in a range of 100 fs to 5 ps
,”
Appl. Surf. Sci.
249
,
322
331
(
2005
).
4.
N. N.
Nedialkow
,
S. E.
Imamova
, and
P. A.
Atanasov
, “
Ablation of metals by ultrashort laser pulses
,”
J. Phys. D Appl. Phys.
37
,
638
643
(
2004
).
5.
I.
Minagareev
, “
Ultrafast dynamics of melting and ablation at large laser intensities
,”
Dissertation
,
RWTH Aachen
,
2009
.
6.
J.
Lopez
,
G.
Mincuzzi
,
R.
Devillard
,
Y.
Zaouter
,
C.
Hönninger
,
E.
Mottay
, and
R.
Kling
, “
Ablation efficiency of high average power ultrafast laser
,”
J. Laser Appl.
27
,
S28008
(
2015
).
7.
B.
Jäggi
,
B.
Neuenschwander
,
M.
Schmid
,
M.
Muralt
,
J.
Zuercher
, and
U.
Hunziker
, “
Influence of the pulse duration in the ps-regime on the ablation efficiency of metals
,”
Phys. Procedia
12
,
164
171
(
2011
).
8.
A.
Ancona
,
S.
Döring
,
C.
Jauregui
,
F.
Röser
,
J.
Limpert
,
S.
Nolte
, and
A.
Tünnermann
, “
Femtosecond and picosecond laser drilling of metals at high repetition rates and average powers
,”
Opt. Lett.
34
,
3304
3306
(
2009
).
9.
J.
Finger
and
M.
Reininghaus
, “
Effect of pulse to pulse interactions on ultrashort pulse laser drilling of steel with repetition rates up to 10MHz
,”
Opt. Express
22
,
18790
18799
(
2014
).
10.
S.
Döring
,
T.
Ullsperger
,
F.
Heisler
,
S.
Richter
,
A.
Tünnermann
, and
S.
Nolte
, “
Hole formation process in ultrashort pulse laser percussion drilling
,”
Phys. Procedia
41
,
431
440
(
2013
).
11.
F
.
Dausinger
, “
Femtosecond technology for precision manufacturing: Fundamental and technical aspects
,”
Proc. SPIE
4830
(
2003
).
12.
A.
Ancona
,
F.
Röser
,
K.
Rademaker
,
J.
Limpert
,
S.
Nolte
, and
A.
Tünnermann
, “
High speed laser drilling of metals using a high repetition rate, high average power ultrafast fiber CPA system
,”
Opt. Express
16
,
8958
8968
(
2008
).
13.
J.
Finger
,
C.
Kalupka
, and
M.
Reininghaus
, “
High power ultra-short pulse laser ablation of IN718 using high repetition rates
,”
J. Mater. Process. Technol.
226
,
221
227
(
2015
).
14.
T. V.
Kononenko
,
C.
Freitag
,
D. N.
Sovyk
,
A. B.
Lukhter
,
K. V.
Skvortsov
, and
V. I.
Konov
, “
Influence of pulse repetition rate on percussion drilling of Ti-based alloy by picosecond laser pulses
,”
Opt. Lasers Eng.
103
,
65
70
(
2018
).
15.
J.
Negel
,
A.
Loescher
,
D.
Bauer
,
D.
Sutter
,
A.
Killi
,
M. A.
Ahmed
, and
T.
Graf
, “
Second generation thin-disk multipass amplifier delivering picosecond pulses with 2kW of average output power
,” in
Lasers Congress 2016 (ASSL, LSC, LAC), OSA Technical Digest (online)
(
Optical Society of America
,
2016
), paper ATu4A.5.
16.
P.
Rußbüldt
,
J.
Weitenberg
,
T.
Sartorius
,
G.
Rotarius
,
D.
Hoffmann
, and
R.
Poprawe
, “
Ytterbium Innoslab amplifiers—The high average power approach of ultrafast lasers
,”
AIP Conf. Proc.
1462
,
120
123
(
2012
).
17.
T.
Mans
,
R.
Graf
,
J.
Dolkemeyer
, and
C.
Schnitzler
, “Femtosecond Innoslab amplifier with 300W average power and pulse energies in the mJ-regime,”
Proc. SPIE
8959
,
895916
(
2014
).
18.
D.
Breitling
, “
GasphaseneinflüssebeimAbtragen und BohrenmitultrakurzgepulsterLaserstrahlung
,”
Dissertation
,
Univ. Stuttgart
,
2009
.
19.
J.
Finger
, “
Puls-zu-Puls-WechselwirkungenbeimUltrakurzpuls-LaserabtragmithohenRepetitionsraten
,”
Dissertation
,
RWTH Aachen
,
2017
.
20.
A. Y.
Vorobyev
,
V. M.
Kuzmichev
,
N. G.
Kokody
,
P.
Kohns
,
J.
Dai
, and
C.
Guo
, “
Residual thermal effects in Al following single ns- and fs-laser pulse ablation
,”
Appl. Phys. A
82
,
357
362
(
2006
).
21.
D. J.
Förster
,
R.
Weber
,
D.
Holder
, and
T.
Graf
, “
Estimation of the depth limit for percussion drilling with picosecond laser pulses
,”
Opt. Express
26
,
11546
11552
(
2018
).
22.
R.
Weber
,
T.
Graf
,
P.
Berger
,
V.
Onuseit
,
M.
Wiedenmann
,
C.
Freitag
, and
A.
Feuer
, “
Heat accumulation during pulsed laser materials processing
,”
Opt. Express
22
,
11312
11324
(
2014
).
23.
G.
Kamlage
,
T.
Bauer
,
A.
Ostendorf
, and
B. N.
Chichkov
, “
Deep drilling of metals by femtosecond laser pulses
,”
Appl. Phys. A
77
,
307
310
(
2003
).
24.
A.
Michalowski
, “
UntersuchungenzurMikrobearbeitung von Stahl mitultrakurzenLaserpulsen
,”
Dissertation
,
Univ. Stuttgart
,
2014
.
25.
F.
Cardarelli
,
Materials Handbook: A Concise Desktop Reference
, 2nd ed. (
Springer
,
London
,
2008
).
26.
T. V.
Kononenko
,
S. M.
Klimentov
,
V. I.
Konov
,
P. A.
Pivovarov
,
S. V.
Garnov
,
F.
Dausinger
, and
D.
Breitling
, “
Propagation of short-pulsed laser radiation and stages of ablative deep channel formation
,”
Proc. SPIE
4274
,
248
257
(
2001
).
27.
M.
van Kampen
,
J. T.
Kohlhepp
,
W. J. M.
de Jonge
,
B.
Koopmans
, and
R.
Coehoorn
, “
Sub-picosecond electron and phonon dynamics in nickel
,”
J. Phys. Condens. Matter
17
,
6823
6834
(
2005
).
28.
B.
Hüttner
and
G.
Rohr
, “
On the theory of ps and sub-ps laser pulse interaction with metals. I. Surface temperature
,”
Appl. Surf. Sci.
103
,
269
274
(
1996
).
You do not currently have access to this content.