The optical coherence tomography (OCT) is a measuring technology which is well-established in medical engineering since the early 1990s. More recently, the technology found its way into laser materials processing where it is used for seam tracking and inspection and also for monitoring and control of deep-penetration laser welding. In this work, deep-penetration laser welding of aluminum and steel using an OCT-system for in-process monitoring of the weld depth was investigated. It is shown that statistical data processing is mandatory to extract the actual keyhole depth. Therefore, two different measures, percentile filtering and considering the frequency distribution of the OCT-data, were considered. Thereby, it is demonstrated that the frequency distribution of the OCT-data has a specific pattern with a local maximum which correlates with the keyhole depth. Moreover, this feature is more significant for welding aluminum and therefore enables one to detect the weld depth more independently and accurately compared to currently applied measures.

1.
Lasertechnik für die Fertigung, Grundlagen, Perspektiven und Beispiele für den innovativen Ingenieur
, edited by
R.
Poprawe
(
Springer
,
Berlin
,
2005
).
2.
A.
Salminen
,
J.
Lehtinen
, and
P.
Harkko
, “
The effect of welding parameters on keyhole and melt pool behavior during laser welding with high power fiber laser
,” in
ICALEO 2008 Congress Proceedings: 27th International Congress on Laser Materials Processing, Laser Microprocessing and Nanomanufacturing
(Laser Institute of America,
2008
), pp.
354
363
.
3.
V.-P.
Matilainen
,
H.
Piili
,
A.
Salminen
, and
O.
Nyrhilä
, “
Preliminary investigation of keyhole phenomena during single layer fabrication in laser additive manufacturing of stainless steel
,” in
Physics Procedia: 15th Nordic Laser Materials Processing Conference, Nolamp 15
, edited by
A.
Salminen
(
Elsevier
,
New York
,
2015
), Vol. 78, pp.
377
387
.
4.
J. L.
Zou
,
Y.
He
,
S. K.
Wu
,
T.
Huang
, and
R. S.
Xiao
, “
Experimental and theoretical characterization of deep penetration welding threshold induced by 1-μm laser
,”
Appl. Surf. Sci.
357
,
1522
1527
(
2015
).
5.
H.
Hu
,
F.
Fetzer
,
P.
Berger
, and
P.
Eberhard
, “
Simulation of laser welding using advanced particle methods
,”
GAMM-Mitt.
39
,
149
169
(
2016
).
6.
H.
Hügel
and
F.
Dausinger
, “
Laserstrahlschweißen von Aluminiumwerkstoffen—Probleme, Lösungsansätze und Anwendungspotenziale
,” in
Strahltechnik. Laserstrahlfügen: Prozesse, Systeme, Anwendungen, Trends
. Beiträge zum 4. Laser-Anwenderforum, edited by
G.
Sepold
and
T.
Seefeld
(
BIAS Verlag
,
Bremen
,
2002
), Vol. 19, pp.
201
214
.
7.
C.
Benter
,
D.
Petring
, and
R.
Poprawe
, “
Investigation of the transition from heat conduction to deep penetration welding with high power diode lasers
,” in
Lasers in Manufacturing Conference 2005: Proceedings of the 3rd International WLT-Conference on Lasers in Manufacturing 2005
,
Munich
,
June 2005
, edited by
E.
Beyer
,
F.
Dausinger
,
A.
Ostendorf
, and
A.
Otto
(
AT-Fachverlag
,
2005
), pp.
67
72
.
8.
J. P.
Oliveira
,
R. M.
Miranda
, and
F. M.
Braz Fernandes
, “
Welding and joining of NiTi shape memory alloys: A review
,”
Prog. Mater. Sci.
88
,
412
466
(
2017
).
9.
N.
Deyneka-Dupriez
and
A.
Denkl
, “
Advances of OCT technology for laser beam processing
,”
Laser Technik J.
14
,
34
38
(
2017
).
10.
L. P.
Hariri
,
M.
Mino-Kenudson
,
E. J.
Mark
, and
M. J.
Suter
, “
In vivo optical coherence tomography
,”
Arch. Pathol. Lab. Med.
136
,
1492
1501
(
2012
).
11.
A. F.
Fercher
,
W.
Drexler
,
C. K.
Hitzenberger
, and
T.
Lasser
, “
Optical coherence tomography: Principles and applications
,”
Rep. Prog. Phys.
66
,
239
303
(
2003
).
12.
M.
Hagen-Eggert
,
P.
Koch
, and
G.
Hüttmann
, “
Analysis of the signal fall-off in spectral domain optical coherence tomography systems
,” in
Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XVI
, edited by
Joseph A.
Izatt
,
James G.
Fujimoto
, and
Valery V.
Tuchin
(
SPIE
,
2012
), p.
82131K
.
13.
J. A.
Izatt
and
M. A.
Choma
, “
Theory of optical coherence tomography
,” in
Optical Coherence Tomography. Technology and Applications
, edited by
Wolfgang
Drexler
and
James G.
Fujimoto
(
Springer
,
New York
,
2008
), pp.
47
72
.
14.
J.
Fujimoto
and
W.
Drexler
, “
Introduction to optical coherence tomography
,” in
Optical Coherence Tomography. Technology and Applications
, edited by
Wolfgang
Drexler
and
James G.
Fujimoto
(
Springer
,
New York
,
2008
), pp.
1
45
.
15.
N.
Deyneka-Dupriez
, “
Optical coherence tomography for remote laser welding
,” in
Physics Procedia. Laser Assisted Net Shape Engineering 9. Proceedings of the 9th LANE 2016
, edited by
M.
Schmidt
,
F.
Vollertsen
, and
C. B.
Arnold
(
Elsevier
,
New York
,
2016
).
16.
R.
Schmitt
,
G.
Mallmann
,
M.
Devrient
, and
M.
Schmidt
, “
3D polymer weld seam characterization based on optical coherence tomography for laser transmission welding applications
,” in
Physics Procedia. Laser Assisted Net Shape Engineering 8. Proceedings of the 8th LANE 2016
, edited by
M.
Schmidt
,
F.
Vollertsen
, and
M.
Merklein
(
Elsevier
,
New York
,
2014
), Vol. 56, pp.
1305
1314
.
17.
T.
Bautze
and
M.
Kogel-Hollacher
, “
Keyhole depth is just a distance
,”
Laser Technik J.
11
,
39
43
(
2014
).
18.
M.
Kogel-Hollacher
,
M.
Schoenleber
,
T.
Bautze
,
M.
Strebel
, and
R.
Moser
, “
Measurement and closed-loop control of the penetration depth in laser materials processing
,” in
Physics Procedia. Laser Assisted Net Shape Engineering 9. Proceedings of the 9th LANE 2016
, edited by
M.
Schmidt
,
F.
Vollertsen
, and
C. B.
Arnold
(
Elsevier
,
New York
,
2016
).
19.
T.
Bautze
,
R.
Moser
,
M.
Strebel
, and
M.
Kogel-Hollacher
, in
Lasers in Manufacturing Conference 2015. Proceedings of the 8th International WLT-Conference on Lasers in Manufacturing 2015
,
Munich
,
June 2015
.
20.
L.
Huang
,
X.
Hua
,
D.
Wu
, and
F.
Li
, “
Numerical study of keyhole instability and porosity formation mechanism in laser welding of aluminum alloy and steel
,”
J. Mater. Process. Technol.
252
,
421
431
(
2018
).
21.
R. P. W.
Duin
,
H.
Haringa
, and
R.
Zeelen
, “
Fast percentile filtering
,”
Pattern Recognit. Lett.
4
,
269
272
(
1986
).
22.
M.
Boley
,
R.
Weber
, and
T.
Graf
, in
Lasers in Manufacturing Conference 2015: Proceedings of the 8th International WLT-Conference on Lasers in Manufacturing 2015
,
Munich
,
June 2015
.
23.
M.
Zhang
,
Z.
Zhang
,
K.
Tang
,
C.
Mao
,
Y.
Hu
, and
G.
Chen
, “
Analysis of mechanisms of underfill in full penetration laser welding of thick stainless steel with a 10 kW fiber laser
,”
Opt. Laser Technol.
98
,
97
105
(
2018
).
24.
S.
Katayama
, “
Defect formation mechanisms and preventive procedures in laser welding
,” in
Handbook of Laser Welding Technologies
, edited by
S.
Katayama
(
Woodhead Publishing
,
Cambridge
,
2013
), pp.
332
373
.
25.
H.
Wang
,
M.
Nakanishi
, and
Y.
Kawahito
, “
Effects of welding speed on absorption rate in partial and full penetration welding of stainless steel with high brightness and high power laser
,”
J. Mater. Process. Technol.
249
,
193
201
(
2017
).
26.
A. F. H.
Kaplan
, “
Local flashing events at the keyhole front in laser welding
,”
Opt. Lasers Eng.
68
,
35
41
(
2015
).
27.
Laser Material Processing
, edited by
W.
Steen
and
J.
Mazumder
, 4th ed. (
Springer
,
New York
,
2010
).
28.
F.
Dorsch
,
T.
Harrer
,
P.
Haug
, and
S.
Plasswich
, “
Process control using capillary depth measurement
,” in
ICALEO 2016 Congress Proceedings: 35th International Congress on Laser Materials Processing, Laser Microprocessing and Nanomanufacturing
(Laser Institute of America,
2016
).
You do not currently have access to this content.