Laser cleaning of metallic alloys for the purpose of removal of metal oxide layers is based on laser thermal ablation. In laser thermal ablation, the interaction between the laser beam and oxide layer may generate significant thermal effects to induce additional thermal oxidation or even melting a thin layer of the underlying surface. The change of surface oxide status may subsequently affect corrosion behavior of the metallic alloys. In this work, the effects of laser cleaning on corrosion behavior of hot-rolled AA5083-O aluminum alloy were investigated using electrochemical impedance spectroscopy. The results showed that the laser-cleaned surfaces exhibited higher corrosion resistance in 3.5 wt. % NaCl solution than the as-received alloy, with a significant increase in impedance and reduction in capacitance. The corrosion behavior was correlated to the change of surface oxide status measured by glow discharge optical emission spectrometry, x-ray photoelectron spectroscopy, and high-resolution transmission electron microscopy. It was concluded that the laser cleaning removed the original, less protective oxide layer consisting of a discontinuous MgO/MgAl2O4 outer layer (∼20 nm) and MgO/MgAl2O4 particles dispersed inner layer (∼300 nm) on the as-received surface but resulted in the formation of more protective oxide layer containing mainly Al2O3 and MgO, which were responsible for the improvement of the corrosion performance. The laser fluence played an important role in determining the thickness of the newly formed oxide layers that subsequently affected the corrosion performance of laser-cleaned alloy.

1.
C. N.
Cochran
and
W. C.
Sleppy
, “
Oxidation of high-purity aluminum and 5052-aluminum-magnesium alloy at elevated temperatures
,”
J. Electrochem. Soc.
108
,
322
327
(
1961
).
2.
S.
Joshi
,
W. G.
Fahrenholtz
, and
M. J.
O’Keefe
, “
Effect of alkaline cleaning and activation on aluminum alloy 7075-T6
,”
Appl. Surf. Sci.
257
,
1859
1863
(
2011
).
3.
F.
Cheng
,
H.
Zhao
,
Y.
Wang
,
B.
Xiao
, and
J.
Yao
, “
Evolution of surface oxide film of typical aluminum alloy during medium-temperature brazing process
,”
Trans. Tianjin Univ.
20
,
54
59
(
2014
).
4.
K. J.
Holub
and
L. J.
Matienzo
, “
Magnesium diffusion in several aluminum alloys
,”
Appl. Surf. Sci.
9
,
22
38
(
1981
).
5.
J. R.
Flores
,
H.
Terryn
,
O.
Steenhaut
, and
J. H. W.
de Wit
, “
Influence of Mg enrichment in the corrosion behavior of Al-Mg alloys
,”
Electrochem. Soc.
2003
,
131
140
(
2004
).
6.
M. H. M.
Zaki
,
Y.
Mohd
, and
N. N. C.
Isa
, “
Surface pre-treatment of aluminium by cleaning, chemical ething and conversion coating
,”
AIP Conf. Proc.
1901,
120006
(
2017
).
7.
Z.
Feng
,
Y.
Liu
,
T.
Hashimoto
,
G. E.
Thompson
,
X.
Zhou
, and
P.
Skeldon
, “
Influence of surface pretreatments on the corrosion protection of sol-gel coated AA2024-T3 aluminium alloy
,”
Surf. Interface Anal.
45
,
1452
1456
(
2013
).
8.
C.
Vargel
,
M.
Jacques
and
M. P.
Schmidt
, “Cleaning of aluminium,” in Corrosion of Aluminium (Elsevier, Oxford,
2004
).
9.
D. J.
Whitehead
,
P. L.
Crouse
,
M. J. J.
Schmidt
,
L.
Li
,
M. W.
Turner
, and
A. J. E.
Smith
, “
Monitoring laser cleaning of titanium alloys by probe beam reflection and emission spectroscopy
,”
Appl. Phys. A Mater.
93
,
123
127
(
2008
).
10.
A. W.
AlShaer
,
L.
Li
, and
A.
Mistry
, “
The effects of short pulse laser surface cleaning on porosity formation and reduction in laser welding of aluminium alloy for automotive component manufacture
,”
Opt. Laser Technol.
64
,
162
171
(
2014
).
11.
T.
Dimogerontakis
,
R.
Oltra
, and
O.
Heintz
, “
Thermal oxidation induced during laser cleaning of an aluminium-magnesium alloy
,”
Appl. Phys. A Mater.
81
,
1173
1179
(
2005
).
12.
B. P.
Payne
,
M. C.
Biesinger
, and
N. S.
McIntyre
, “
X-ray photoelectron spectroscopy studies of reactions on chromium metal and chromium oxide surfaces
,”
J. Electron. Spectrosc.
184
,
29
37
(
2011
).
13.
K.
Shimizu
,
G. M.
Brown
,
K.
Kobayashi
,
P.
Skeldon
,
G. E.
Thompson
, and
G. C.
Wood
, “
The early stages of high temperature oxidation of an Al-0.5wt%Mg alloy
,”
Corros. Sci.
40
,
557
575
(
1998
).
14.
V.
Barnier
,
O.
Heintz
,
D. E.
Roberts
,
R.
Oltra
, and
S.
Costil
, “
XPS and SIMS study of aluminium native oxide modifications induced by Q-switched Nd:YAG laser treatment
,”
Surf. Interface Anal.
38
,
406
409
(
2006
).
15.
G. J.
Brug
,
A. L. G.
Vandeneeden
,
M.
Sluytersrehbach
, and
J. H.
Sluyters
, “
The analysis of electrode impedances complicated by the presence of a constant phase element
,”
J. Electroanal. Chem.
176
,
275
295
(
1984
).
16.
J.
Bisquert
,
G.
Garcia-Belmonte
,
P.
Bueno
,
E.
Longo
, and
L. O. S.
Bulhoes
, “
Impedance of constant phase element (CPE)-blocked diffusion in film electrodes
,”
J. Electroanal. Chem.
452
,
229
234
(
1998
).
17.
W. L.
Xu
,
T. M.
Yue
, and
H. C.
Man
, “
Effect of laser formed AlN/Al2O3 films on corrosion behaviour of aluminium alloy 6013
,”
Surf. Eng.
23
,
284
290
(
2007
).
18.
T. T.
Wong
and
G. Y.
Liang
, “
Effect of laser melting treatment on the structure and corrosion behaviour of aluminium and Al-Si alloys
,”
J. Mater. Process Technol.
63
,
930
934
(
1997
).
19.
D. S.
Qian
,
X. L.
Zhong
,
T.
Hashimoto
,
Y. Z.
Yan
, and
Z.
Liu
, “
Effect of excimer laser surface melting on the corrosion performance of a SiCp/Al metal matrix composite
,”
Appl. Surf. Sci.
330
,
280
291
(
2015
).
20.
Z.
Liu
,
P. H.
Chong
,
A. N.
Butt
,
P.
Skeldon
, and
G. E.
Thompson
, “
Corrosion mechanism of laser-melted AA 2014 and AA 2024 alloys
,”
Appl. Surf. Sci.
247
,
294
299
(
2005
).
You do not currently have access to this content.