Laser transmission welding is a non-contact and efficient process technology for joining thermoplastic polymers. In the conventional process, laser sources in the wavelength range of 1 μm are usually used. Therefore, most of the laser radiation is transmitted through the upper joining partner and absorbed only in the lower joining partner. As a result, the possibilities to influence the temperature field especially in the upper joining partner are limited. To overcome these limitations, an additional thulium fiber-laser with a wavelength of 1.94 μm is used in this study and coaxially aligned with a diode laser. The use of an additional thulium fiber-laser leads to a significant absorption in the upper joining partner. Through this approach, it is shown that the temperature field and the weld seam geometry can be influenced by using these two different discrete laser wavelengths. Depending on the intensity distribution of both lasers, an increase of the size of the heat affected zone in the upper joining partner can be observed. In order to develop a better process understanding, a thermal finite element model is built up and verified by comparing the calculated size of the heat affected zone for different process parameters with the experimental data. The model is able to represent the influence of both laser sources on the temperature field and is used to calculate characteristics of the temperature field, such as maximum temperatures or cooling rates. The characteristics are then used to explain the weld seam morphology, such as occurrence and size of spherulitic structures in the weld seam.

1.
V.
Mattus
and
J.
Engel
, “
Durchblick beim Durchstrahlen
,” in
Kunststoffe
, edited by Gerhard Gotzmann (
Carl Hanser Verlag
,
München
,
2001
), Vol.
97
, p.
10
.
2.
U. A.
Russek
, “
Prozesstechnische Aspekte des Laserdurchstrahlschweißens von Thermoplasten
,”
Dissertation
,
Universität Aachen
,
2006
.
3.
M.
Devrient
,
M.
Kern
,
P.
Jaeschke
,
U.
Stute
,
H.
Haferkamp
, and
M.
Schmidt
, “
Experimental investigation of laser transmission welding of thermoplastics with part-adapted temperature fields
,”
Phys. Procedia
41
,
59
69
(
2013
).
4.
D.
Bonefeld
, “
Eigenspannungen, Spaltüberbrückung und Strahloszillation beim Laserdurchstrahlschweißen
,”
Dissertation
,
Universität Paderborn
,
2012
.
5.
A.
Hofmann
, “
Hybrides Laserdurchstrahlschweißen von Kunststoffen
,”
Dissertation
,
Universität Erlangen-Nürnberg
,
2006
.
6.
I.
Mingareev
,
F.
Weirauch
,
A.
Olowinsky
,
L.
Shah
,
P.
Kadwani
, and
M.
Richardson
, “
Welding of polymers using a 2 μm thulium fiber laser
,”
Opt. Laser Technol.
44
,
2095
2099
(
2012
).
7.
A.
Schkutow
and
T.
Frick
, “
Influence of adapted wavelengths on temperature fields and melt pool geometry in laser transmission welding
,”
Phys. Procedia
83
,
1055
1063
(
2016
).
8.
W.
Kaiser
,
Kunststoffchemie für Ingenieure
(
Carl Hanser Verlag
,
München Wien
,
2006
).
9.
S.
Polster
, “
Laserdurchstrahlschweißen transparenter Polymerbauteile
,”
Dissertation
,
Universität Erlangen-Nürnberg
,
2009
.
10.
D.
Hänsch
, “
Die optischen Eigenschaften von Polymeren und ihre Bedeutung für das Durchstrahlschweißen mit Diodenlaser
,”
Dissertation
,
Universität Aachen
,
2001
.
11.
G. W.
Ehrenstein
,
Polymer Werkstoffe: Struktur – Eigenschaften-Anwendungen
(
Carl Hanser Verlag
,
München
,
2011
).
12.
H
.
Klein
, “
Laserschweißen von Kunststoffen in der Mikrotechnik
,”
Dissertation
,
Rheinisch-Westfälische Technische Hochschule Aachen
,
2001
.
13.
T.
Härtig
, “
Stoffübertragung beim Spritzgießen
,”
Dissertation
,
Technische Universität Chemnitz
,
2012
.
14.
H.
Domininghaus
,
P.
Elsner
,
P.
Eyerer
, and
T.
Hirth
,
Kunststoffe: Eigenschaften und Anwendungen, 8. Auflage
(
Springer Verlag
,
Berlin
,
2012
).
15.
M.
Bonnet
,
Kunststofftechnik: Grundlagen, Verarbeitung, Werkstoffauswahl und Fallbeispiele
(
Springer Verlag
,
Wiesbaden
,
2016
).
You do not currently have access to this content.