Lithium-ion batteries are widely used as energy storage devices due to their high energy density and versatile applicability. Key components of lithium-ion batteries are electrically isolated electrodes and a liquid electrolyte solution which enables ion transport between the electrodes. Laser structuring of electrodes is a promising approach to enhance the high-current capability of lithium-ion batteries by reducing cell internal resistances, as a larger contact area of the active material with the electrolyte solution is created. In the work described here, lithium-ion battery anodes were structured by locally ablating small fractions of the coating using femtosecond laser pulses with infrared wavelengths. A study on ablation characteristics depending on different process parameters such as laser fluence and repetition rate was performed. Special focus was on the ablation efficiency, enabling an optimized process design. The influence of the electrode composition was taken into account by studying the ablation behavior at a varying binder content. Evenly distributed micro holes were chosen in order to keep active material removal at a minimum. To evaluate the effect of structured graphite anodes on the electrochemical properties of lithium-ion batteries, test cells were manufactured and galvanostatically cycled at different current rates. Results show improvements in high-current performance which is expressed by an increased discharge capacity yield.

1.
A.
Sakti
,
J. J.
Michalek
,
E. R.
Fuchs
, and
J. F.
Whitacre
, “
A techno-economic analysis and optimization of Li-ion batteries for light-duty passenger vehicle electrification
,”
J. Power Sources
273
,
966
980
(
2015
).
2.
R.
Korthauer
,
Handbuch Lithium-Ionen-Batterien
(
Springer Berlin Heidelberg
,
Berlin, Heidelberg
,
2013
).
3.
H.
Zheng
,
J.
Li
,
X.
Song
,
G.
Liu
, and
V. S.
Battaglia
, “
A comprehensive understanding of electrode thickness effects on the electrochemical performances of Li-ion battery cathodes
,”
Electrochim. Acta
71
,
258
265
(
2012
).
4.
K. G.
Gallagher
,
S. E.
Trask
,
C.
Bauer
,
T.
Woehrle
,
S. F.
Lux
,
M.
Tschech
,
P.
Lamp
,
B. J.
Polzin
,
S.
Ha
,
B.
Long
, et al, “
Optimizing areal capacities through understanding the limitations of lithium-ion electrodes
,”
J. Electrochem. Soc.
163
,
A138
(
2015
).
5.
S.
Ferrari
,
M.
Loveridge
,
S. D.
Beattie
,
M.
Jahn
,
R. J.
Dashwood
, and
R.
Bhagat
, “
Latest advances in the manufacturing of 3D rechargeable lithium microbatteries
,”
J. Power Sources
286
,
25
46
(
2015
).
6.
M.
Roberts
,
P.
Johns
,
J.
Owen
,
D.
Brandell
,
K.
Edstrom
,
G.
El Enany
,
C.
Guery
,
D.
Golodnitsky
,
M.
Lacey
,
C.
Lecoeur
, et al, “
3D lithium ion batteries—from fundamentals to fabrication
,”
J. Mater. Chem.
21
,
9876
(
2011
).
7.
J. W.
Long
,
B.
Dunn
,
D. R.
Rolison
, and
H. S.
White
, “
Three-dimensional battery architectures
,”
Chem. Rev.
104
,
4463
4492
(
2004
).
8.
M.
Osiak
,
H.
Geaney
,
E.
Armstrong
, and
C.
O’Dwyer
, “
Structuring materials for lithium-ion batteries: Advancements in nanomaterial structure, composition, and defined assembly on cell performance
,”
J. Mater. Chem. A
2
,
9433
(
2014
).
9.
B. N.
Chichkov
,
C.
Momma
,
S.
Nolte
,
A.
Tünnermann
, “
Femtosecond, picosecond and nanosecond laser ablation of solids
,”
Appl. Phys. A
63
,
109
(
1996
).
10.
X.
Liu
,
D.
Du
, and
G.
Mourou
, “
Laser ablation and micromachining with ultrashort laser pulses
,”
IEEE J. Quantum Electron.
33
,
1706
1716
(
1997
).
11.
J.
Pröll
,
H.
Kim
,
A.
Piqué
,
H. J.
Seifert
, and
W.
Pfleging
, “
Laser-printing and femtosecond-laser structuring of LiMn2O4 composite cathodes for Li-ion microbatteries
,”
J. Power Sources
255
,
116
124
(
2014
).
12.
P.
Smyrek
,
J.
Pröll
,
J.-H.
Rakebrandt
,
H. J.
Seifert
, and
W.
Pfleging
, in
SPIE LASE
, edited by
U.
Klotzbach
,
K.
Washio
,
C. B.
Arnold
(
SPIE
,
2015
), p.
93511D
.
13.
M.
Mangang
,
J.
Pröll
,
C.
Tarde
,
H. J.
Seifert
, and
W.
Pfleging
, in
SPIE LASE
, edited by
U.
Klotzbach
,
K.
Washio
,
C. B.
Arnold
(
SPIE
,
2014
), p.
89680M
.
14.
W.
Pfleging
,
R.
Kohler
, and
J.
Pröll
, “Laser generated microstructures in tape cast electrodes for rapid electrolyte wetting: new technical approach for cost efficient battery manufacturing,” in
SPIE LASE
, edited by
U.
Klotzbach
,
K.
Washio
,
C. B.
Arnold
(
SPIE
,
2014
), p.
89680B
.
15.
A. H. A.
Lutey
,
A.
Fortunato
,
A.
Ascari
,
S.
Carmignato
, and
L.
Orazi
, in
ASME 2014 International Manufacturing Science and Engineering Conference Collocated with the JSME 2014 International Conference on Materials and Processing and the 42nd North American Manufacturing Research Conference, Detroit, MI, June 9–13, 2014
(
ASME
,
2014
).
16.
B.
Schmieder
, in
SPIE LASE
, edited by
U.
Klotzbach
,
K.
Washio
,
C. B.
Arnold
(
SPIE
,
2015
), p.
93511C
.
17.
J.
Hoffman
,
J.
Chrzanowska
,
S.
Kucharski
,
T.
Moscicki
,
I. N.
Mihailescu
,
C.
Ristoscu
, and
Z.
Szymanski
, “
The effect of laser wavelength on the ablation rate of carbon
,”
Appl. Phys. A
117
,
395
400
(
2014
).
18.
M.
Ebner
,
D.-W.
Chung
,
R. E.
García
, and
V.
Wood
, “
Tortuosity anisotropy in lithium-ion battery electrodes
,”
Adv. Energy Mater.
4
,
1301278
(
2014
).
19.
V. P.
Nemani
,
S. J.
Harris
, and
K. C.
Smith
, “
Design of bi-tortuous, anisotropic graphite anodes for fast ion-transport in Li-ion batteries
,”
J. Electrochem. Soc.
162
,
A1415
(
2015
).
20.
T.
Günther
,
N.
Billot
,
J.
Schuster
,
J.
Schnell
,
F. B.
Spingler
, and
H. A.
Gasteiger
, “
The manufacturing of electrodes: Key process for the future success of lithium-ion batteries
,”
AMR
1140
,
304
311
(
2016
).
21.
T.
Marks
,
S.
Trussler
,
A. J.
Smith
,
D.
Xiong
, and
J. R.
Dahn
, “
A guide to Li-ion coin-cell electrode making for academic researchers
,”
J. Electrochem. Soc.
158
,
A51
(
2011
).
22.
S.
Nolte
,
C.
Momma
,
H.
Jacobs
,
A.
Tünnermann
,
B. N.
Chichkov
,
B.
Wellegehausen
, and
H.
Welling
, “
Ablation of metals by ultrashort laser pulses
,”
J. Opt. Soc. Am. B
14
,
2716
2722
(
1997
).
You do not currently have access to this content.