For some applications of the aerospace and automotive industry, thermoset and thermoplastic composites need to be joined. This material combination cannot be welded because thermoset matrix materials do not melt. In order to apply welding for this material combination, a semi-interpenetrating polymer network (SIPN) layer was generated on the surface of the thermoset material. SIPN-composites consist of a thermoset carrier covered by a thin thermoplastic functional layer. This SIPN-layer can now be used as a connection material for welding. In this work, the authors investigated the process heat development and the weld seam quality of laser transmission welded SIPN-composites to glass fiber fabric reinforced polyetherimide. Furthermore, the influence of an SIPN-layer containing carbon black was compared with that of an unmodified SIPN-layer. For these investigations, bead on plate welding was performed in order to monitor the process heat generation using a thermographic camera. Additionally, lap shear samples consisting of both SIPN-types were welded and tested. These results were correlated with the detected bead on plate welding process temperatures.

1.
E.
Witten
,
T.
Kraus
, and
M.
Kuehnel
,
Composites-Marktbericht 2015
(
Carbon Composites e.V. & AVK-Verlag
,
Frankfurt
,
2015
).
2.
S.
Niemeyer
,
W.
Surjoseputro
,
G.
Ziegmann
, and
I.
Mindelis
, “
Wet laminating for creating thermoplastic functional layers on thermosetting composites
,” in
SAMPE Europe International Conference
, Paris (
2011
).
3.
W.
Surjoseputro
,
S.
Niemeyer
, and
G.
Ziegmann
, “
Resistance implant welding of thermosetting composite with thermoplastic functional layer
,” in
SAMPE Europe International Conference
, Paris (
2010
).
4.
P.
Jaeschke
, “
Laser transmission welding of continuous carbon fiber reinforced plastics and thermoplastic polymers
,” Ph.D. thesis,
Leibniz University Hanover
,
Hannover, Germany
,
2012
.
5.
T.
Frick
,
Untersuchung der prozessbestimmenden Strahl-Stoff-Wechselwirkungen beim Laserschweißen von Kunststoffen
(
Meisenbach
,
Bamberg
,
2007
).
6.
M.
Chen
,
G.
Zak
, and
P.
Bates
, “
Estimating contour laser transmission welding start-up conditions using a non-contact method
,”
Weld. World
52
,
71
76
(
2008
).
7.
J. D.
Van de Ven
and
A. G.
Erdman
, “
Bridging gaps in laser transmission welding of thermoplastics
,”
Trans. ASME, J. Manuf. Sci. Eng.
129
,
1011
1018
(
2007
).
8.
H.
Potente
,
Fügen von Kunststoffen. Grundlagen, Verfahren, Anwendung
(
Carl Hanser Verlag München Wien
,
München
,
2004
).
9.
H.
Haferkamp
,
D.
Herzog
, and
P.
Jäschke
, “
Einfluss der Strahlformung und der Intensitätsverteilung auf die Prozessgrenzen beim Laserdurchstrahlschweißen
,”
Joining Plast.—Fügen von Kunstst.
1
,
42
48
(
2009
).
10.
P.
Jaeschke
,
V.
Wippo
,
O.
Suttmann
, and
L.
Overmeyer
, “
Advanced laser welding of high-performance thermoplastic composites
,” in
Proceedings of the 33rd International Congress on Applications of Lasers & Electro Optics ICALEO
, San Diego, CA (
2014
).
11.
V.
Wippo
,
P.
Jaeschke
,
U.
Stute
,
D.
Kracht
, and
H.
Haferkamp
, “
The influence of carbon fibres on the temperature distribution during the laser transmission welding process
,” in
Proceedings of the 15th European Conference on Composite Materials
, ECCM 15, Venice, Italy (
2012
).
12.
See www.composites.nl/documents/TCAC_MD_PEI_LAM.pdf for information about glass fiber reinforced PEI (accessed 3 May
2016
).
You do not currently have access to this content.