Lightweight and functional integration are two major drivers for additive manufacturing technologies. In order to integrate functionality, the use of smart materials like Nickel-Titanium (NiTi) shape memory alloys (SMAs) is a constructive approach. Generally, shape memory alloys are hard to machine and at the same time expensive materials. In this context, additive manufacturing processes like laser metal deposition are reasonable technologies to process these materials as the used powder can be recycled and near net shape geometry can be generated due to a layer-by-layer build-up process. For actuator applications, it might be reasonable to use hybrid systems, meaning just certain sections of a part are made of a shape memory material. One possible example is a NiTi shape memory element on a Ti sheet metal. Due to the varying coefficients of thermal expansion, a dissimilar build-up by means of laser metal deposition without any defects like cracks is challenging. In this paper, an approach that applies preheating is presented to generate SMA elements additively on dissimilar substrates by means of laser metal deposition. Subject of investigations are varying process parameter combinations (e.g., laser power, feed rate, and powder mass flow) and varying preheating temperatures. Based on metallographic analyses, the generated samples are evaluated. Major objective of these analyses are a defect free connection. Additionally, the forming microstructure and the occurring dilution zone are analyzed. In order to characterize the influence of different preheating strategies on the hardness and on the transformations temperatures of the generated parts, the results of hardness measurements and differential scanning calorimetry measurements are presented.

1.
J. C.
Williams
and
E. A.
Starke
, Jr.
, “
Progress in structural materials for aerospace systems
,”
Acta Mater.
51
,
5775
5799
(
2003
).
2.
I.
Campell
,
D.
Bourell
, and
I.
Gibson
, “
Additive manufacturing: Rapid prototyping comes of age
,”
Rapid Prototyp. J.
18
(
4
),
255
258
(
2012
).
3.
S. W.
Williams
,
F.
Martina
,
A. C.
Addison
,
J.
Ding
,
G.
Pardal
, and
P.
Colegrove
, “
Wire + arc additive manufacturing
,”
Mater. Sci. Technol.
32
(
7
),
641
647
(
2016
).
4.
G. B.
Kauffman
and
I.
Mayo
, “
The story of nitinol: The serendipitous discovery of the memory metal and its applications
,”
Chem. Educ.
2
(
2
),
1
21
(
1997
).
5.
B. V.
Krishna
,
S.
Bose
, and
A.
Bandyopadhyay
, “
Laser processing of net-shape NiTi shape memory alloy
,”
Metall. Mater. Trans. A
38
,
1096
1103
(
2007
).
6.
B. V.
Krishna
,
S.
Bose
, and
A.
Bandyopadhyay
, “
Fabrication of porous NiTi shape memory alloy structures using laser engineered net shaping
,”
J. Biomed. Mater. Res. B Appl. Biomater.
89
(
2
),
481
490
(
2009
).
7.
S.
Bernard
,
V. K.
Balla
,
S.
Bose
, and
A.
Bandyopadhyay
, “
Rotating bending fatigue response of laser processed porous NiTi alloy
,”
Mater. Sci. Eng. C
31
,
815
820
(
2011
).
8.
S.
Bernard
,
V. K.
Balla
,
S.
Bose
, and
A.
Bandyopadhyay
, “
Compression fatigue behavior of laser processed porous NiTi alloy
,”
J. Mech. Behavior Biomed. Mater.
13
,
62
68
(
2012
).
9.
P. R.
Halani
and
Y. C.
Shin
, “
In situ synthesis and characterization of shape memory alloy nitinol by laser metal deposition
,”
Metall. Mater. Trans. A
43A
,
650
657
(
2012
).
10.
R. R.
Halani
,
I.
Kaya
,
Y. C.
Shin
, and
H. E.
Karaca
, “
Phase transformation characteristics and mechanical characterization of nitinol synthesized by laser metal deposition
,”
Mater. Sci. Eng. A
559
,
836
843
(
2013
).
11.
E.
Toyserkani
,
A.
Khajepour
, and
S.
Corbin
,
Laser Cladding
(
CRC Press
,
Boca Raton London New York Washington, D.C.
,
2005
).
12.
J.
Mazumder
,
D.
Dutta
,
N.
Kikuchi
, and
A.
Ghosh
, “
Closed loop direct metal deposition: Art to part
,”
Opt. Lasers Eng.
34
,
397
414
(
2000
).
13.
M. L.
Griffith
,
D. M.
Keicher
,
C. L.
Atwood
,
J. A.
Romero
,
J. E.
Smugeresky
,
L. D.
Harwell
, and
D. L.
Greene
, “
Free form fabrication of metallic components using laser engineered net shaping (LENS)
,”
Solid Freeform Fabrication Symposium Proceedings, September 1996
, available online at https://sffsymposium.engr.utexas.edu/Manuscripts/1996/1996-16-Griffith.pdf (accessed on July 11, 2016).
14.
I.
Kelbassa
, “
Qualifizieren des laserstrahlauftragschweißens von BLISKs aus nickel- und titanbasislegierungen
,” dissertation,
Technische Hochschule
, Aachen,
2006
; Available online at http://publications.rwth-aachen.de/record/60728/files/Kelbassa_Ingomar.pdf (accessed on July 11, 2016).
15.
S.
Dudziak
,
Beeinflussung der Funktionellen Eigenschaften Aktorischer Nickel-Titan-Legierungen durch die Aktiven Parameter im Mikrolaserschmelzprozess
(
PZH Produktionstechnisches Zentrum GmbH
,
2012
).
16.
C.
Haberland
,
Additive Verarbeitung von NiTi-Formgedächtniswerkstoffen mittels Selective Laser Melting
(
Shaker Verlag
,
Aachen
,
2012
).
You do not currently have access to this content.