Remote laser welding of high strength aluminum alloys is still a field of extensive research due to the hot cracking phenomena. Recent research activities have been focused on center-line hot cracks in welds that are located close to the edge of the material. To avoid this type of crack from occurring, a fillet weld joint design could be utilized. However, within the fillet welds there are still transverse hot cracks present on a microscopic scale. This paper presents a thermomechanical analysis of the formation of transverse hot cracks in EN AW-6082 alloy fillet welds. In order to calculate the local deformation near the mush zone, a welding simulation based on the finite element method was created. The simulation was able to depict different settings for the welding speed, laser power, beam position, protruding length of the lower sheet, and the sheet thickness. For this purpose, an automated method for heat source calibration was developed based on image processing of polish of cross sections of different weld seams. As a result, it was possible to investigate the influencing factors on the formation of local strain and strain rate during the hot crack sensitive temperature range. It was found that the welding speed and laser power significantly increased the strain rate, but had no effect on the strain. In addition, it was determined that the position of the laser beam caused a major difference in the formation of strain and strain rate if weld seams changed from partial penetration to full penetration. Full penetration welds had lower strain and strain rate. The protruding length of the lower sheet and the sheet thickness had a minor impact on strain and strain rate. By linking the computerized results of strain and strain rate with data obtained from experiments on the hot crack susceptibility, a hot cracking criteria based on strain rate was found.

1.
C. M.
Schinzel
, “
YAG-Laserstrahlschweißen von aluminiumwerkstoffen für anwendungen im automobilbau
,” Ph.D. thesis,
Universität Stuttgart
, Germany,
2002
.
2.
D.
Weller
,
C.
Bezençon
,
P.
Stritt
,
R.
Weber
, and
T.
Graf
, “
Remote laser welding of multi-alloy aluminium at close-edge position
,” in
Proceedings of the Lasers in Manufacturing Conference, München, Germany
(
2013
), pp.
164
168
.
3.
J.
Schuster
,
Heißrisse in Schweiß-verbindungen
, (
TU Chemnitz
,
Chemnitz, Germany
), (
2004
), p.
233
.
4.
L.
Katgerman
and
D. G.
Eskin
, “
In search of the prediction of hot cracking in aluminium alloys
,” in
Hot Cracking Phenomena in Welds II
, edited by
T.
Böllinghaus
,
H.
Herold
,
C. E.
Cross
, and
C. J.
Lippold
(
Springer-Verlag
,
Berlin, Heidelberg
,
2008
), pp.
3
18
.
5.
C. E.
Cross
, “
On the origin of weld solidification cracking
,” in
Hot Cracking Phenomena in Welds
, edited by
T.
Böllinghaus
and
H.
Herold
(
Springer-Verlag
,
Berlin, Heidelberg
,
2005
), pp.
3
18
.
6.
N. N.
Prohkhorov
, “
The technological strength of metals while crystallising during welding
,”
Weld. Prod.
4
,
1
5
(
1962
).
7.
M.
Rappaz
,
J.-M.
Drezet
, and
M.
Gremaud
, “
A new hot-tearing criterion
,”
Metall. Mater. Trans. A
30
,
449
455
(
1999
).
8.
B.
Hu
and
I. M.
Richardson
, “
Mechanism and possible solution for transverse solidification cracking in laser welding of high strength aluminium alloys
,”
Mater. Sci. Eng. A
429
,
287
294
(
2006
).
9.
R. M.
Hilbinger
, “
Heißrissbildung beim Schweißen von aluminium in blechrandlage
,” Ph.D. thesis,
Universität Bayreuth
,
Germany
,
2000
.
10.
H.
Herold
, “
Rissminderung beim Schweißen von Al-Legierungen mittlerer und höherer Festigkeit (Hot crack reduction of middle and high strength aluminium alloys)
,” AIF-Projekt, No. 13.983B/DVS 01.047, Otto-von-Guericke-Universität Magdeburg, Magdeburg, Germany,
2007
.
11.
P.
Stritt
,
R.
Weber
,
T.
Graf
,
S.
Mueller
, and
J. P.
Weberpals
, “
New hot cracking criterion for laser welding in close-edge position
,” in
Proceedings of the 31st International Congress on Applications of Lasers and Electro-Optics
, Anaheim, USA (
2012
), pp.
357
366
.
12.
A.
Bachhofer
, “
Schneiden und Schweißen von aluminiumwerkstoffen mit festkörperlasern für den karosseriebau
,” Ph.D. thesis,
Universität Stuttgart
,
Germany
,
2000
.
13.
H.
Waldmann
, “
Werkstofftechnische aspekte des Laserstrahlschweißens von alumiumlegierungen für den fahrzeugbau
,” Ph.D. thesis,
Universität Bayreuth
, Germany,
2001
.
14.
V.
Ploshikhin
,
A.
Prikhodovsky
,
M.
Makhutin
,
A.
Ilin
, and
H. W.
Zoch
, “
Integrated mechanical-metallurgical approach to modeling of solidification cracking in welds
,” in
Hot Cracking Phenomena in Welds
, edited by
T.
Böllinghaus
and
H.
Herold
(
Springer-Verlag
,
Berlin, Heidelberg
,
2005
), pp.
223
244
.
15.
H.
Langrieger
,
F.
Krafft
,
M.
Mensinger
, and
F.
Oefele
, “
Fundamental analysis of hot cracks in remote laser welded aluminium fillet welds
,” in
Proceedings of the Lasers in Manufacturing Conference
, München, Germany (
2015
).
16.
Dassault Systems, Abaqus/CAE Documentation 6.12, Dassault Systemes Simulia Corporation, Johnston, RI,
2012
.
17.
A.
Belitzki
and
C.
Marder
, “
Prozesskette zur automatisierten Wärmequellenkalibrierung für die Schweißsimulation
,”
IWB Newsl.
1
,
13
(
2005
).
18.
ESI Group,
Sysweld Werkstoffkennwertdatenbank
(
ESI Group
,
Paris, France
,
2012
).
19.
R.
Liu
,
Z.
Dong
, and
Y.
Pan
, “
Solidification crack susceptibility of aluminium alloy weld metals
,”
Trans. Nonferrous Met. Soc. China
16
,
110
116
(
2006
).
20.
J. P.
Weberpals
, “
Nutzen und Grenzen guter Fokussierbarkeit beim Laserstrahlschweißen
,” Ph.D. thesis,
Universität Stuttgart
, Germany,
2010
.
21.
V.
Ploshikhin
,
A.
Prikhodovsky
, and
H. W.
Zoch
,
Technologische Maßnahmen zur Vermeidung der Heißrissbildung beim Schweißen von Aluminiumlegierungen
(
DVS-Berichte Band
,
Düsseldorf
,
2004
), Vol.
229
, pp.
46
51
.
22.
J.
Rapp
, “
Laserschweißeignung von aluminiumwerkstoffen für anwendungen im leichtbau
,” Ph.D. thesis,
Universität Stuttgart
, Germany,
1996
.
23.
J.-M.
Drezet
and
D.
Allehaux
, “
Application of the rappaz-drezet-gremaud hot tearing criterion to welding of aluminium alloys
,” in
Hot Cracking Phenomena in Welds II
, edited by
T.
Böllinghaus
,
H.
Herold
,
C. E.
Cross
, and
C. J.
Lippold
(
Springer-Verlag
,
Berlin, Heidelberg
,
2008
), pp.
19
37
.
24.
W. S.
Pellini
, “
Strain theory of hot tearing
,”
Foundry
80
,
124
199
(
1952
).
You do not currently have access to this content.