Laser engineered net shaping process is widely used to build multilayered structures for critical applications by melting and solidification of metallic powders in a layer by layer manner using a focused laser beam. An a-priori estimation of the influence of laser beam power and scanning speed on the layerwise build dimensions, thermal cycles, and mechanical properties is requisite in laser engineered net shaping process. We present here a three-dimensional heat transfer model to estimate the temperature field and layer profile in single line multilayer depositions of H13 tool steel. A novel approach is undertaken to account for the laser beam energy input to the substrate and the depositing powder materials considering the attenuation of the beam power. The computed build profiles are validated with the corresponding experimentally measured results. The computed cooling rates show a reducing trend from the bottom to the top layers while that in the transformation temperature range tend to increase toward the top layer. The measured hardness shows a gentle reducing trend from the top to the bottom layers but exhibits a relatively steep increase in the layers near to the substrate.

1.
C.
Atwood
,
M.
Griffith
,
L.
Harwell
,
M.
Schlienger
,
M.
Ensz
,
J.
Smugeresky
,
J.
Romero
,
D.
Greene
, and
D.
Reckaway
, in
Proceedings of the ICALEO
(
1998
), Vol.
E-1-7
.
2.
R. P.
Mudge
and
N. R.
Wald
, “Laser engineered net shaping advances additive manufacturing and repairs,”
Weld. J.
86
,
44
48
(
2007
).
3.
W.
Hofmeister
,
M.
Wert
,
J.
Smugeresky
,
J. A.
Philliber
, and
M.
Griffith
, “Investigation of solidification in the laser-engineered net shaping (LENS) process,”
JOM
51
,
1
7
(
1999
).
4.
W.
Hofmeister
,
M.
Griffith
,
M.
Ensz
, and
J.
Smugeresky
, “
Solidification in direct metal deposition by LENS processing
,”
JOM-J.
53
,
30
34
(
2001
).
5.
Y.
Fu
,
A.
Loredo
,
B.
Martin
, and
A. B.
Vannes
, “
A theoretical model for laser and powder particles interaction during laser cladding
,”
J. Mater. Process. Technol.
128
,
106
112
(
2002
).
6.
E. H.
Amara
,
F.
Hamadi
,
L.
Achab
, and
O.
Boumia
, “Numerical modeling of the laser cladding process using a dynamic mesh approach,”
J Achieve. Mater. Manuf. Eng.
15
,
100
106
(
2006
).
7.
I.
Tabernero
,
A.
Lamaikiz
,
S.
Martínez
,
E.
Ukar
, and
L. N.
López de Lacalle
, “
Modelling of energy attenuation due to powder flow-laser beam interaction during laser cladding process
,”
J. Mater. Process. Technol.
212
,
516
522
(
2012
).
8.
R.
Ye
,
J. E.
Smugeresky
,
B.
Zheng
,
Y.
Zhou
, and
E. J.
Laverina
, “
Numerical modeling of the thermal behavior during the LENS® process
,”
Mater. Sci. Eng. A
428
,
47
53
(
2006
).
9.
A.
Vasinonta
,
J. L.
Beuth
, and
M. L.
Griffith
, “
A process map for consistent build conditions in the solid freeform fabrication of thin-walled structures
,”
J. Manuf. Sci. E: Trans. ASME
123
,
615
622
(
2001
).
10.
S.
Bontha
,
N. W.
Klingbeil
,
P. A.
Kobryn
, and
H. L.
Fraser
, “
Thermal process maps for predicting solidification microstructure in laser fabrication of thin-wall structures
,”
J. Mater. Process. Technol.
178
,
135
142
(
2006
).
11.
L.
Costa
,
R.
Vilar
,
T.
Reti
, and
A. M.
Deus
, “
Rapid tooling by laser powder deposition: Process simulation using finite element analysis
,”
Acta Mater.
53
,
3987
3999
(
2005
).
12.
V.
Neela
and
A.
De
, “
Three-dimensional heat transfer analysis of LENS™ process using finite element method
,”
Int. J. Adv. Manuf. Technol.
45
,
935
943
(
2009
).
13.
V.
Fallah
,
M.
Alimerdani
,
S. F.
Corbin
, and
A.
Khajepour
, “
Temporal development of melt-pool morphology and clad geometry in laser powder deposition
,”
Comput. Mater. Sci.
50
,
2124
2134
(
2011
).
14.
L.
Wang
and
S.
Feliceilli
, “
Process modeling in laser deposition of multilayer SS410 steel
,”
J. Manuf. Sci. E: Trans. ASME
129
,
1028
1034
(
2007
).
15.
L.
Wang
,
S. D.
Felicelli
, and
P.
Pratt
, “
Residual stresses in LENS-deposited AISI 410 stainless steel plates
,”
Mater. Sci. Eng. A
496
,
234
241
(
2008
).
16.
T.
Zhang
,
C. S.
Wu
,
G. L.
Qin
,
X. Y.
Wang
, and
S. Y.
Lin
, “
Thermomechanical analysis for Laser + GMAW-P hybrid welding process
,”
Comput. Mater. Sci.
47
,
848
856
(
2010
).
17.
W. S.
Chang
and
S. J.
Na
, “A study on the prediction of the laser weld shape with varying heat source equations and the thermal distortions of a small structure in micro-joining,”
J. Mater. Process. Technol.
120
,
208
214
(
2001
).
18.
W.
Hofmeister
,
M.
Wert
,
J.
Smugeresky
,
J. A.
Phiiber
,
M.
Griffith
, and
M.
Ensz
, “Weld overlay cladding of high strength low alloy steel with austenitic stainless steel - structure and properties,”
JOM-J.
51
,
1
6
(
1999
).
19.
M.
Alimardani
,
E.
Toyserkani
, and
J. P.
Huisoon
, “
A 3D dynamic numerical approach for temperature and thermal stress distributions in multilayer laser solid freeform fabrication process
,”
Opt. Lasers Eng.
45
,
1115
1130
(
2007
).
20.
M.
Picasso
,
C. F.
Marsden
,
J. D.
Wagnière
,
A.
Frenk
, and
M. A.
Rappaz
, “
A simple but realistic model for laser cladding
,”
Metall. Mater. Trans. B
25
,
281
293
(
1994
).
21.
A.
Frenk
,
M.
Vandyoussefi
,
J. D.
Wagnière
,
A.
Zryd
, and
W.
Kurz
, “
Analysis of the laser-cladding process for stellite on steel
,”
Metall. Mater. Trans. B
28
,
501
508
(
1997
).
22.
S.
Bag
,
A.
Tivedi
, and
A.
De
, “
Use of a multivariate optimization algorithm to develop a self-consistent numerical heat transfer model for laser spot welding
,”
Int. J. Adv. Manuf. Technol.
38
,
575
585
(
2008
).
23.
V.
Manvatkar
,
A.
De
, and
T.
DebRoy
, “
Heat transfer and material flow during laser assisted multi-layer additive manufacturing
,”
J. Appl. Phys.
116
,
124905
(
2014
).
24.
P.
Balu
,
S.
Hamid
, and
R.
Kovacevic
, “
Finite element modeling of heat transfer in single and multilayered deposits of Ni-WC produced by the laser-based powder deposition process
,”
Int. J. Adv. Manuf. Technol.
68
,
85
98
(
2013
).
25.
J.
Lin
and
W. M.
Steen
, “
An in-process method for the inverse estimation of the powder catchment efficiency during laser cladding
,”
Opt. Laser Technol.
30
,
77
84
(
1998
).
26.
S.
Balaguru
,
S.
Kumar
,
V.
Murali
, and
P.
Chellapandi
, “
Thermo Mechanical Analysis of SS304 Circular Grid Plate Hard Faced with Colmonoy
,”
Appl. Mech. Mater.
229–231
,
710
717
(
2012
).
27.
M.
Shantla
,
C.
Kerk
, and
T.
Altan
, “
Process modeling in machining. Part II: validation and applications of the determined flow stress data
,”
Int. J. Mach. Tool Manuf.
41
,
1659
1680
(
2001
).
28.
K. A.
Chiang
and
Y. C.
Chen
, “
Laser surface hardening of H13 steel in the melt case
,”
Mater. Lett.
59
,
1919
1923
(
2005
).
29.
C. T.
Kwok
,
H. C.
Man
, and
F. T.
Cheng
, in
26th International Congress on Applications of Laser and Electro-Optics, ICALEO 2007-Congress
(
2007
).
30.
N. V.
Rao
,
G. M.
Reddy
, and
S.
Nagarjuna
, “Microstructure and property optimization of LENS deposited H13 tool steel,”
Mater. Des.
32
,
2496
2506
(
2011
).
31.
J.
Brooks
,
C.
Robino
,
T.
Headly
,
S.
Good
, and
M.
Griffith
, in
Proceedings of the Solid Freeform Fabrication Symposium
,
Austin, TX
, August 1999 (
1999
), pp.
375
382
.
32.
M. L.
Griffith
,
M. E.
Schelienger
,
L. D.
Harwell
,
M. S.
Oliver
,
M. D.
Baldwin
,
M. T.
Ensz
,
M.
Essien
,
J.
Brooks
,
C. V.
Robino
,
J. E.
Smukeresky
,
W. H.
Hofmeister
,
M. J.
Wert
, and
D. V.
Nelson
, “
Understanding thermal behavior in the LENS process
,”
Mater. Des.
20
,
107
113
(
1999
).
33.
A. J.
Pinkerton
and
L.
Li
, “
Direct additive laser manufacturing using gas- and water-atomised H13 tool steel powders
,”
Int. J. Adv. Manuf. Technol.
25
,
471
479
(
2005
).
You do not currently have access to this content.