Optical scattering in electrospun poly(ε-caprolactone) (ES-PCL) nanofibers was studied. Femtosecond laser beams with wavelengths of 775 and 387.5 nm were directed onto PCL nanofiber meshes of different thicknesses, and the reflection and transmission were measured by using an integrating sphere. Meshes were prepared by electrospinning PCL in acetone and dichloromethane (DCM). The absorption and scattering coefficients of the samples were calculated using a three-flux scattering approximation. The PCL/acetone meshes had finer fibers, smaller pore size, and 50% larger scattering coefficients than the PCL/DCM meshes. In addition, somewhat higher scattering coefficients were measured at shorter wavelength in both PCL/Ace and PCL/DCM nanofibers. However, in all cases, scattering coefficients were 15 to 30 times the absorption coefficients; thus, scattering was the dominant factor in optical attenuation in both types of meshes and at both wavelengths.

1.
M.
Martina
and
D. W.
Hutmacher
, “
Biodegradable polymers applied in tissue engineering research: A review
,”
Polym. Int.
56
,
145
157
(
2007
).
2.
D. H.
Reneker
and
I.
Chun
, “
Nanometre diameter fibres of polymer, produced by electrospinning
,”
Nanotechnology
7
,
216
(
1996
).
3.
C. H.
Lee
,
Y. C.
Lim
,
D. F.
Farson
,
H. M.
Powell
, and
J. J.
Lannutti
, “
Vascular wall engineering via femtosecond laser ablation: Scaffolds with self-containing smooth muscle cell populations
,”
Ann. Biomedi. Eng.
39
,
3031
3041
(
2011
).
4.
S. N.
Bhatia
and
C. S.
Chen
, “
Tissue engineering at the micro-scale
,”
Biomed. Microdevices
2
,
131
144
(
1999
).
5.
Y. C.
Lim
,
J.
Johnson
,
Z.
Fei
,
Y.
Wu
,
D. F.
Farson
,
J. J.
Lannutti
,
H. W.
Choi
, and
L. J.
Lee
, “
Micropatterning and characterization of electrospun poly (ε‐caprolactone)/gelatin nanofiber tissue scaffolds by femtosecond laser ablation for tissue engineering applications
,”
Biotechnol. Bioeng.
108
,
116
126
(
2011
).
6.
S. J.
Hollister
, “
Porous scaffold design for tissue engineering
,”
Nature Mater.
4
,
518
524
(
2005
).
7.
E.
Rebollar
,
D.
Cordero
,
A.
Martins
,
S.
Chiussi
,
R. L.
Reis
,
N. M.
Neves
, and
B.
León
, “
Improvement of electrospun polymer fiber meshes pore size by femtosecond laser irradiation
,”
Appl. Surf. Sci.
257
,
4091
4095
(
2011
).
8.
H.
woon Choi
,
J. K.
Johnson
,
J.
Nam
,
D. F.
Farson
, and
J.
Lannutti
, “
Structuring electrospun polycaprolactone nanofiber tissue scaffolds by femtosecond laser ablation
,”
J. Laser Appl.
19
,
225
(
2007
).
9.
Y.
Wu
,
A.
Vorobyev
,
R. L.
Clark
, and
C.
Guo
, “
Femtosecond laser machining of electrospun membranes
,”
Appl. Surf. Sci.
257
,
2432
2435
(
2011
).
10.
J. R.
Mourant
,
T.
Fuselier
,
J.
Boyer
,
T. M.
Johnson
, and
I. J.
Bigio
, “
Predictions and measurements of scattering and absorption over broad wavelength ranges in tissue phantoms
,”
Appl. Opt.
36
,
949
957
(
1997
).
11.
M.
Lualdi
,
A.
Colombo
,
A.
Mari
,
S.
Tomatis
, and
R.
Marchesini
, “
Development of simulated pigmented lesions in an optical skin-tissue phantom: Experimental measurements in the visible and near infrared
,”
J. Laser Appl.
14
,
122
(
2002
).
12.
J.
Lai
,
Z.
Li
,
C.
Wang
, and
A.
He
, “
Experimental measurement of the refractive index of biological tissues by total internal reflection
,”
Appl. Opt.
44
,
1845
1849
(
2005
).
13.
Z.
Shi
and
C. A.
Anderson
, “
Application of Monte Carlo simulation‐based photon migration for enhanced understanding of near‐infrared (NIR) diffuse reflectance. Part I: Depth of penetration in pharmaceutical materials
,”
J. Pharm. Sci.
99
,
2399
2412
(
2010
).
14.
A.
Morel
and
S.
Maritorena
, “
Bio‐optical properties of oceanic waters: A reappraisal
,”
J. Geophys. Res.: Oceans (1978–2012)
106
,
7163
7180
(
2001
).
15.
M. F.
Modest
,
Radiative Heat Transfer
(
Elsevier
,
New York
,
2013
).
16.
S.
Chandrasekhar
,
Radiative Transfer
(
Courier Dover Publications
,
New York
,
1960
).
17.
P.
Kubelka
and
F.
Munk
, “
Ein beitrag zur optik der farbanstriche
,”
Z. Tech. Phys.
12
,
593
601
(
1931
).
18.
F.
Fabbri
,
M. A.
Franceschini
, and
S.
Fantini
, “
Characterization of spatial and temporal variations in the optical properties of tissuelike media with diffuse reflectance imaging
,”
Appl. Opt.
42
,
3063
3072
(
2003
).
19.
L.
Yang
,
B.
Kruse
, and
S. J.
Miklavcic
, “
Revised Kubelka–Munk theory. II. Unified framework for homogeneous and inhomogeneous optical media
,”
J. Opt. Soc. Am. A Opt. Image Sci. Vis.
21
,
1942
1952
(
2004
).
20.
P.
Mudgett
and
L.
Richards
, “
Multiple scattering calculations for technology
,”
Appl. Opt.
10
,
1485
1502
(
1971
).
21.
D. K.
Sardar
and
L. B.
Levy
, Jr.
, “
Comparative evaluation of absorption coefficients of KCl:Eu and CaF:Eu using a spectrophotometer and an integrating sphere
,”
J. Appl. Phys.
79
,
1759
(
1996
).
22.
W.-F.
Cheong
,
S. A.
Prahl
, and
A. J.
Welch
, “
A review of the optical properties of biological tissues
,”
IEEE J Quantum Electron.
26
,
2166
2185
(
1990
).
23.
E.
Patterson
,
C.
Shelden
, and
B.
Stockton
, “
Kubelka-Munk optical properties of a barium sulfate white reflectance standard
,”
Appl. Opt.
16
,
729
732
(
1977
).
24.
T.
Burger
,
H.
Ploss
,
J.
Kuhn
,
S.
Ebel
, and
J.
Fricke
, “
Diffuse reflectance and transmittance spectroscopy for the quantitative determination of scattering and absorption coefficients in quantitative powder analysis
,”
Appl. spectrosc.
51
,
1323
1329
(
1997
).
25.
T.
Burger
,
J.
Kuhn
,
R.
Caps
, and
J.
Fricke
, “
Quantitative determination of the scattering and absorption coefficients from diffuse reflectance and transmittance measurements: Application to pharmaceutical powders
,”
Appl. Spectrosc.
51
,
309
317
(
1997
).
26.
J.
Kuhn
,
S.
Korder
,
M.
Arduini-Schuster
,
R.
Caps
, and
J.
Fricke
, “
Infrared‐optical transmission and reflection measurements on loose powders
,”
Rev. Sci. Instrum.
64
,
2523
2530
(
1993
).
27.
C. H.
Lee
,
Y. C.
Lim
,
H. M.
Powell
,
D. F.
Farson
, and
J. J.
Lannutti
, “
Electrospun vascular graft properties following femtosecond laser ablation
,”
J. Appl. Polym. Sci.
124
,
2513
2523
(
2012
).
28.
Thorlabs, w.t.c.
29.
A.
Cox
,
A. J.
DeWeerd
, and
J.
Linden
, “
An experiment to measure Mie and Rayleigh total scattering cross sections
,”
Am. J. Phys.
70
,
620
(
2002
).
30.
J. H.
Seinfeld
and
S. N.
Pandis
,
Atmospheric Chemistry and Physics: From Air Pollution to Climate Change
(
John Wiley & Sons
,
New York
,
2012
).
You do not currently have access to this content.