Despite extensive research work, accurate prediction of the ablation behavior in the high energy nanosecond laser ablation process is still lacking, which may differ significantly depending on laser parameters, surrounding medium, and target material characteristics. In this paper, nanosecond laser ablation of aluminum in air and water is investigated through a self-contained hydrodynamic model under different laser fluences involving no phase explosion and phase explosion. The ablation depths and profiles are predicted and validated against the literature data and experiments. In case of nanosecond laser ablation of aluminum in water, deeper crater depths are found in all the conditions studied in this work, which may be attributed to the combination effects of laser ablation and shock compression. The analysis of the shock compression in air and water indicates that the shock compression is mainly responsible for this enhancement of ablation in water.

1.
M.
Von Allmen
,
Laser-Beam Interactions with Materials: Physical Principles and Applications
, Springer Series in Material Science, Vol. 2 (
Springer
,
New York
,
1987
).
2.
C.
Porneala
and
D. A.
Willis
, “
Observation of nanosecond laser-induced phase explosion in aluminum
,”
Appl. Phys. Lett.
89
,
211121
(
2006
).
3.
A.
Miotello
and
R.
Kelly
, “
Laser-induced phase explosion: New physical problems when a condensed phase approaches the thermodynamic critical temperature
,”
Appl. Phys. A
69
,
S67
S73
(
1999
).
4.
A. V.
Gusarov
and
I.
Smurov
, “
Near-surface laser-vapour coupling in nanosecond pulsed laser ablation
,”
J. Phys. D: Appl. Phys.
36
(
23
),
2962
2971
(
2003
).
5.
J. M.
Fishburn
,
R. P.
Mildren
,
D.
Kaptian
,
M. J.
Withford
,
D. J.
Brown
, and
J. A.
Piper
, “
Exploring the explosive ablation regime of metals in nanosecond micromachining
,”
Proc. SPIE
3885
,
453
460
(
2000
).
6.
G.
Gristoforetti
,
S.
Legnaioli
,
V.
Palleschi
,
E.
Tognoni
, and
P. A.
Benedetti
, “
Observation of different mass removal regimes during the laser ablation of an aluminum target in air
,”
J. Anal. At. Spectrom.
23
,
1518
1528
(
2008
).
7.
I.
Vladoiu
,
M.
Stafe
,
C.
Negutu
, and
I. M.
Popescu
, “
The dependence of the ablation rate of metals on nanosecond laser fluence and wavelength
,”
J. Optoelectron. Adv. Mater.
10
(
12
),
3177
3181
(
2008
).
8.
A.
Gragossian
,
S. H.
Tavassoli
, and
B.
Shokri
, “
Laser ablation of aluminum from normal evaporation to phase explosion
,”
J. Appl. Phys.
105
,
103304
(
2009
).
9.
Q.
Lu
, “
Thermodynamic evolution of phase explosion during high-power nanosecond laser ablation
,”
Phys. Rev. E
67
,
016410
(
2003
).
10.
H.
Domer
and
O.
Bostanjoglo
, “
Phase explosion in laser-pulsed metal films
,”
Appl. Surf. Sci.
208–209
,
442
446
(
2003
).
11.
W. T.
Nichols
,
T.
Sasaki
, and
N.
Koshizaki
, “
Laser ablation of a platinum in water. I. Ablation mechanisms
,”
J. Appl. Phys.
100
,
114911
(
2006
).
12.
H. W.
Kang
,
H.
Lee
, and
A. J.
Welch
, “
Laser ablation in a liquid-confined environment using a nanosecond laser pulse
,”
J. Appl. Phys.
103
(
8
),
083101
(
2008
).
13.
M. H.
Mahdieh
,
M.
Nikbakht
,
Z. E.
Moghadam
, and
M.
Sobhani
, “
Crater geometry characterization of Al targets irradiated by single pulse and pulse trains of Nd:YAG laser in ambient air and water
,”
Appl. Surf. Sci.
256
,
1778
1783
(
2010
).
14.
D.
Kim
and
H.
Lee
, “
Enhanced ablation and photoacoustic excitation in near-threshold laser ablation of liquid-coated surfaces
,”
J. Appl. Phys.
89
(
10
),
5703
5706
(
2001
).
15.
A.
Dupont
,
P.
Caminat
,
P.
Bournot
, and
J. P.
Gauchon
, “
Enhancement of material ablation using 248, 308, 532, 1064 nm laser pulse with a water film on the treated surface
,”
J. Appl. Phys.
78
(
3
),
2022
2028
(
1995
).
16.
H. W.
Kang
,
H.
Lee
,
S.
Chen
, and
A. J.
Welch
, “
Enhancement of bovine bone ablation assisted by a transparent liquid layer on a target surface
,”
IEEE J. Quantum Electron.
42
(
7
),
633
642
(
2006
).
17.
R.
Mariella
,
A.
Rubenchik
,
M.
Norton
,
G.
Donohue
, and
K.
Roberts
, “
Laser-matter interaction with submerged samples
,” LLNL Technical Report No. 427603 [
Lawrence Livermore National Laboratory (LLNL)
, Livermore, CA,
2010
].
18.
Z.
Chen
,
A.
Bogaerts
, and
A.
Vertes
, “
Phase explosion in atmospheric pressure infrared laser ablation from water-rich targets
,”
Appl. Phys. Lett.
89
,
041503
(
2006
).
19.
J.
Ohara
,
M.
Nagakubo
,
N.
Kawahara
, and
T.
Hattori
, “
High aspect ratio etching by infrared laser induced micro bubbles
,” in
Proceedings of the IEEE Tenth Annual International Workshop on Micro Electro Mechanical Systems
(
IEEE
,
New York
,
1997
), pp.
175
179
.
20.
B.
Wu
and
Y. C.
Shin
, “
A one-dimensional hydrodynamic model for pressures near the coating-water interface during laser shock peening
,”
J. Appl. Phys.
101
,
023510
(
2007
).
21.
B.
Wu
and
Y. C.
Shin
, “
Two dimensional hydrodynamic simulation of high pressures induced by high-power nanosecond laser-matter interactions under water
,”
J. Appl. Phys.
101
,
103514
(
2007
).
22.
B.
Wu
,
Y. C.
Shin
,
H.
Pakhal
,
N. M.
Laurendeau
, and
R. P.
Lucht
, “
Modeling and experimental verification of plasmas induced by high-power nanosecond laser-aluminum interactions in air
,”
Phys. Rev. E
76
,
026405
(
2007
).
23.
R. M.
More
,
K. H.
Warren
,
D. A.
Young
, and
G. B.
Zimmerman
, “
A new quotidian equation of state (QEOS) for hot dense matter
,”
Phys. Fluids
31
(
10
),
3059
3078
(
1988
).
24.
F. H.
Ree
, Report No. UCRL-52190, 1976 (unpublished).
25.
X. D.
Liu
and
S.
Osher
, “
Convex ENO high order multi-dimensional schemes without field by field decomposition or staggered grids
,”
J. Comput. Phys.
142
(
2
),
304
330
(
1998
).
26.
See http://en.wikipedia.org/wiki/Aluminum for the evaporation temperature for aluminum.
27.
J. M.
Fishburn
,
D. W.
Coutts
,
M. J.
Withford
, and
J. A.
Piper
, “
Phase explosion thresholds in metals ablated under pulsed nanosecond radiation
,” in
Proceedings of the Australasian Conference on Optics, Lasers and Spectroscopy
(University of Queensland, Brisbane, Australia,
2001
), p.
127
.
28.
D.
Ashkenasi
,
M.
Lorenz
,
R.
Stoian
, and
A.
Rosenfeld
, “
Surface damage threshold and structuring of dielectrics using femtosecond laser pulses: The role of incubation
,”
Appl. Surf. Sci.
150
(
1–4
),
101
106
(
1999
).
29.
S.
Laville
,
F.
Vidal
,
T. W.
Johnston
,
O.
Barthelemy
,
M.
Chaker
,
B.
Le Drogoff
,
J.
Margot
, and
M.
Sabsabi
, “
Fluid modeling of the laser ablation depth as a function of the pulse duration for conductors
,”
Phys. Rev. E
66
,
066415
(
2002
).
30.
M.
Colina
,
C.
Molpeceres
,
M.
Morales
,
F.
Allens-Perkins
,
G.
Guadano
, and
J. L.
Ocana
, “
Laser ablation modeling of aluminum, silver and crystalline silicon for applications in photovoltaic technologies
,”
Surf. Eng.
27
(
6
),
414
423
(
2011
).
31.
H.
Ehrenreigh
,
H. R.
Philipp
, and
B.
Segall
, “
Optical properties of aluminum
,”
Phys. Rev.
132
(
5
),
1918
1928
(
1963
).
32.
B.
Wu
and
Y. C.
Shin
, “
Absorption coefficient of aluminum near the critical point and the consequences on high-power nanosecond laser ablation
,”
Appl. Phys. Lett.
89
,
111902
(
2006
).
33.
L. X.
Benedict
,
J. E.
Klepeis
, and
F. H.
Streitz
, “
Calculation of optical absorption in Al across the solid-to liquid transition
,”
Phys. Rev. B
71
,
064103
(
2005
).
34.
T.
Ogitsu
,
L. X.
Benedict
,
E.
Schwegler
,
E. W.
Draeger
, and
D.
Prendergast
, “
First-principles calculations of solid and liquid aluminum optical absorption spectra near the melting curve: Ambient and high-pressure results
,”
Phys. Rev. B
80
,
214105
(
2009
).
35.
Y.
Cao
,
Y. C.
Shin
, and
B.
Wu
, “
A parametric study on overlapping laser shock peening of 4140 steel via modeling and experiments
,”
Trans. ASME J. Manuf. Sci. Eng.
132
(
6
),
061010
(
2010
).
You do not currently have access to this content.