Bone regeneration is the result of cellular events such as osteogenesis and neovascularization. However, implantation of autogenous grafts may be necessary in cases of bone mass loss due to high impact trauma. The disadvantages of the latter approach include morbidity of the donor area. Biomaterials represent an alternative for bone restoration. The most widely used compounds are collagen or hydroxyapatite membranes because of their biocompatibility and osteoconductivity. Laser therapy has been applied in combination with these implants to accelerate bone regeneration. The objective of this study was to evaluate the effects of low-level laser therapy (LLLT) on the healing of rat left tibial bone defects filled with hydroxyapatite or collagen membrane. Twenty rats were used. Surgical bone defects were created in the proximal third of the left tibia, and the animals were divided into four groups according to treatment: animals receiving hydroxyapatite implants (group H), animals receiving collagen implants (group C), animals treated with hydroxyapatite plus LLLT (group HL), and animals treated with collagen membrane plus LLLT (group CL). The animals were sacrificed 8 weeks after surgery, and the bone samples were obtained for analysis. Histomorphometrical methods were used for new bone quantification. Data were analyzed by analysis of variance (p < 0.05). Histological analysis showed the formation of new bone in the implant area with cortical aspect in groups. Bone neoformation was also demonstrated on radiographs as radiopacity of the hydroxyapatite granules and of the contour of the defects implanted with the collagen membrane. However, no significant difference for new bone formation was observed between the groups studied. The biomaterials used were presented good osteoconduction; however, the laser therapy protocol used was not adequate to accelerate the osteogenic process in the bone defect regeneration in the advanced bone healing process.

1.
L. A.
Fortier
,
H. G.
Potter
,
E. J.
Rickey
,
L. V.
Schnabel
,
L. F.
Foo
,
L. R.
Chong
,
T.
Stokol
,
J.
Cheetham
, and
A. J.
Nixon
, “
Concentrated bone marrow aspirate improves full-thickness cartilage repair compared with microfracture in the equine model
,”
J. Bone Jt. Surg., Am.
92
,
1927
1937
(
2010
).
2.
E. M.
Younger
and
M. W.
Chapman
, “
Morbidity at bone graft donor sites
,”
J. Orthop. Trauma
3
,
192
195
(
1989
).
3.
D. E.
Mark
,
J. O.
Hollinger
,
C.
Hastings
,
G.
Chen
,
L. J.
Marden
, and
A. H.
Reddi
, “
Repair of calvarial nonunions by osteogenin, a bone-inductive protein
,”
Plast. Reconstr. Surg.
86
,
623
630
; discussion 631–622 (
1990
).
4.
R. Z.
LeGeros
, “
Properties of osteoconductive biomaterials: calcium phosphates
,”
Clin. Orthop. Relat. Res.
395
,
81
98
(
2002
).
5.
B. S.
Kim
and
D. J.
Mooney
, “
Development of biocompatible synthetic extracellular matrices for tissue engineering
,”
Trends Biotechnol.
16
,
224
230
(
1998
).
6.
Y. S.
Chen
,
C. L.
Hsieh
,
C. C.
Tsai
,
T. H.
Chen
,
W. C.
Cheng
,
C. L.
Hu
, and
C. H.
Yao
, “
Peripheral nerve regeneration using silicone rubber chambers filled with collagen, laminin and fibronectin
,”
Biomaterials
21
,
1541
1547
(
2000
).
7.
F.
Grinnell
, “
Fibroblast biology in three-dimensional collagen matrices
,”
Trends Cell Biol.
13
,
264
269
(
2003
).
8.
A. R.
Santos
,
H.
Dolder
, and
M. L.
Wada
, “
Dexamethasone and fetal calf serum effects in differentiation of Vero cells cultured on type I collagen gel
,”
J. Submicrosc. Cytol. Pathol.
35
,
35
42
(
2003
).
9.
G. G.
Reid
,
S. D.
Gorham
, and
J. M.
Lackie
, “
The attachment, spreading and growth of baby hamster kidney cells on collagen, chemically modified collagen-composite substrata
,”
J. Mater. Sci.: Mater. Med.
4
,
201
209
(
1993
).
10.
M. R.
Cunha
,
A. R.
Santos
, Jr.
, and
S. C.
Genari
, “
Culture of osteoblasts on collagen polyanion and its potential in the replacement and induction of bone formation
,”
Bol. Med. Vet.
1
,
73
85
(
2005
).
11.
A. P. B.
Borges
,
C. M. F.
Rezende
,
M. F. B.
Ribeiro
,
E. G.
Melo
, and
P. I.
Nóbrega Neto
, “
Synthetic hydroxyapatite as bone substitute in experimental bone defects promoted in the proximal tibia of dog: transmission electron microscopy analysis
,”
Arq. Bras. Med. Vet. Zootecnia
52
,
616
620
(
2000
).
12.
G. M.
Vidigal
, Jr.
and
M.
Groisman
, “
Osseointegration × biointegration: an critical analysis
,”
Rev. Bras. Odontol
54
,
218
224
(
1997
).
13.
E.
Mester
,
S.
Nagylucskay
,
A.
Döklen
, and
S.
Tisza
, “
Laser stimulation of wound healing
,”
Acta Chir. Acad. Sci. Hung.
17
,
49
55
(
1976
).
14.
G. K.
Reddy
,
L.
Stehno-Bittel
, and
C. S.
Enwemeka
, “
Laser photostimulation of collagen production in healing rabbit Achilles tendons
,”
Lasers Surg. Med.
22
,
281
287
(
1998
).
15.
G. A.
Guzzardella
,
P.
Torricelli
,
N.
Nicoli Aldini
, and
R.
Giardino
, “
Laser technology in orthopedics: preliminary study on low power laser therapy to improve the bone-biomaterial interface
,”
Int. J. Artif. Organs
24
,
898
902
(
2001
).
16.
C. C.
Vital
,
A. P. B.
Borges
,
C. C.
Fonseca
,
A. C.
Tsiomis
,
T. B.
Carvalho
,
E. B.
Fontes
,
M. P.
Sena
, and
G.
Fófano
, “
Biocompatibility and behavior of hydroxyapatite on bone defect on rabbit’s ulna
,”
Arq. Bras. Med. Vet. Zootecnia
58
,
175
183
(
2006
).
17.
P. E.
Kreisner
,
D. S.
Blaya
,
L.
Gaião
,
M. E.
Maciel-Santos
,
A.
Etges
,
M.
Santana-Filho
, and
M. G.
de Oliveira
, “
Histological evaluation of the effect of low-level laser on distraction osteogenesis in rabbit mandibles
,”
Med. Oral Pathol. Oral Cir. Bucal
15
,
e616
e618
(
2010
).
18.
M. A.
R
.
O.
Torres
and
E. R.
Teixeira
, “
Influence of low power laser (GaAlAs-λ830 nm) on bone formation in relation to primary stability in bone type IV
,”
Journal of Dental Science
23
, (
2008
).
19.
C. A.
Mandarim de Lacerda
, “
Whats is the interest of normal and pathological morphological research to be quantitative? The exemple of the stereology
,”
Braz. J. Morphol. Sci.
16
,
131
139
(
1999
).
20.
C. E. S.
Vaz
,
Evaluation of the effect of centrifugal osteogenic bone marrow in bone healing process: experimental study in rabbits [thesis]. São Paulo: School of Medicine University of São Paulo, Brazil
,
2006
.
21.
J. P.
Schmitz
,
J. O.
Hollinger
, and
S. B.
Milam
, “
Reconstruction of bone using calcium phosphate bone cements: a critical review
,”
J. Oral Maxillofac. Surg.
57
,
1122
1126
(
1999
).
22.
I.
Ono
,
T.
Tateshita
, and
T.
Nakajima
, “
Evaluation of a high density polyethyelene fixing system for hydroxyapatite ceramic implants
,”
Biomaterials
21
,
143
151
(
2000
).
23.
T. S.
Duarte
,
A. P. B.
Borges
,
M. S. L.
Lavor
,
R.
Filgueiras
,
A. C.
Tsiomis
,
F. L.
Oliveira
, and
K. C. S.
Pontes
, “
Osseointegration of synthetic hydroxyapatite in alveolar process of mandible of dogs: histological features
,”
Arq. Bras. Med. Vet. Zootecnia
58
,
849
853
(
2006
).
24.
J. A.
Camilli
,
M. R.
da Cunha
,
C. A.
Bertran
, and
E. Y.
Kawachi
, “
Subperiosteal hydroxyapatite implants in rats submitted to ethanol ingestion
,”
Arch. Oral Biol.
49
,
747
753
(
2004
).
25.
T. C.
Pinheiro
,
F. F. C. d.
Santos
,
H. Y.
Shirane
, and
M. R.
d Cunha
, “
Hydroxyapatite implants in bone defects produced in rat femurs submitted to passive tobacco exposure
,”
Rev. Bras. Ortop.
43
,
433
441
(
2008
).
26.
M. R.
Cunha
,
A. R.
Santos
,
G.
Goissis
, and
S. C.
Genari
, “
Implants of polyanionic collagen matrix in bone defects of ovariectomized rats
,”
J. Mater. Sci.: Mater. Med.
19
,
1341
1348
(
2008
).
27.
D. M.
Bernales
,
F.
Caride
,
A.
Lewis
, and
L.
Martin
, “
Polymerized collagen membranes: Considerations on its use and bone tissue regeneration techniques
,”
Rev. Cubana Invest. Bioméd.
23
,
65
74
(
2004
).
28.
P. L.
Moreira
,
Y. H.
An
,
A. R.
Santos
, and
S. C.
Genari
, “
In vitro analysis of anionic collagen scaffolds for bone repair
,”
J. Biomed. Mater. Res., Part B: Appl. Biomater.
71
,
229
237
(
2004
).
29.
P. B.
Saadeh
,
R. K.
Khosla
,
B. J.
Mehrara
,
D. S.
Steinbrech
,
S. A.
McCormick
,
D. P.
DeVore
, and
M. T.
Longaker
, “
Repair of a critical size defect in the rat mandible using allogenic type I collagen
,”
J. Craniofac. Surg.
12
,
573
579
(
2001
).
30.
L. B.
Rocha
,
G.
Goissis
, and
M. A.
Rossi
, “
Biocompatibility of anionic collagen matrix as scaffold for bone healing
,”
Biomaterials
23
,
449
456
(
2002
).
31.
R.
Ruano
,
R. G.
Jaeger
, and
M. M.
Jaeger
, “
Effect of a ceramic and a non-ceramic hydroxyapatite on cell growth and procollagen synthesis of cultured human gingival fibroblasts
,”
J. Periodontol.
71
,
540
545
(
2000
).
32.
S.
Endres
,
M.
Landgraff
,
M.
Kratz
, and
A.
Wilke
, “
Biocompatibility testing of various biomaterials as dependent on immune status
,”
Z. Orthop. Ihre Grenzgeb.
142
,
358
365
(
2004
).
33.
M.
Rücker
,
M. W.
Laschke
,
D.
Junker
,
C.
Carvalho
,
A.
Schramm
,
R.
Mülhaupt
,
N. C.
Gellrich
, and
M. D.
Menger
, “
Angiogenic and inflammatory response to biodegradable scaffolds in dorsal skinfold chambers of mice
,”
Biomaterials
27
,
5027
5038
(
2006
).
34.
H. S.
Hedia
, “
Effect of coating thickness and its material on the stress distribution for dental implants
,”
J. Med. Eng. Technol.
31
,
280
287
(
2007
).
35.
K.
Takaoka
,
H.
Nakahara
,
H.
Yoshikawa
,
K.
Masuhara
,
T.
Tsuda
, and
K.
Ono
, “
Ectopic bone induction on and in porous hydroxyapatite combined with collagen and bone morphogenetic protein
,”
Clin. Orthop. Relat. Res.
234
,
250
254
(
1988
).
36.
C. B.
Lopes
,
M. T.
Pacheco
,
L.
Silveira
,
J.
Duarte
,
M. C.
Cangussú
, and
A. L.
Pinheiro
, “
The effect of the association of NIR laser therapy BMPs, and guided bone regeneration on tibial fractures treated with wire osteosynthesis: Raman spectroscopy study
,”
J. Photochem. Photobiol., B
89
,
125
130
(
2007
).
37.
F.
Kamali
,
M.
Bayat
,
G.
Torkaman
,
E.
Ebrahimi
, and
M.
Salavati
, “
The therapeutic effect of low-level laser on repair of osteochondral defects in rabbit knee
,”
J. Photochem. Photobiol., B
88
,
11
15
(
2007
).
38.
A. P.
Lirani-Galvão
,
V.
Jorgetti
, and
O. L.
da Silva
, “
Comparative study of how low-level laser therapy and low-intensity pulsed ultrasound affect bone repair in rats
,”
Photomed. Laser Surg.
24
,
735
740
(
2006
).
39.
T. I.
Karu
,
L. V.
Pyatibrat
, and
N. I.
Afanasyeva
, “
Cellular effects of low power laser therapy can be mediated by nitric oxide
,”
Lasers Surg. Med.
36
,
307
314
(
2005
).
40.
M.
Gordjestani
,
L.
Dermaut
, and
H.
Thierens
, “
Infrared laser and bone metabolism: a pilot study
,”
Int. J. Oral Maxillofac. Surg.
23
,
54
56
(
1994
).
41.
J. B.
Weber
,
A. L.
Pinheiro
,
M. G.
de Oliveira
,
F. A.
Oliveira
, and
L. M.
Ramalho
, “
Laser therapy improves healing of bone defects submitted to autologous bone graft
,”
Photomed. Laser Surg.
24
,
38
44
(
2006
).
42.
M.
Khadra
,
H. J.
Rønold
,
S. P.
Lyngstadaas
,
J. E.
Ellingsen
, and
H. R.
Haanaes
, “
Low-level laser therapy stimulates bone-implant interaction: an experimental study in rabbits
,”
Clin. Oral Implants Res.
15
,
325
332
(
2004
).
43.
H.
Pretel
,
R. F.
Lizarelli
, and
L. T.
Ramalho
, “
Effect of low-level laser therapy on bone repair: histological study in rats
,”
Lasers Surg. Med.
39
,
788
796
(
2007
).
44.
S.
Saito
and
N.
Shimizu
, “
Stimulatory effects of low-power laser irradiation on bone regeneration in midpalatal suture during expansion in the rat
,”
Am. J. Orthod. Dentofacial Orthop.
111
,
525
532
(
1997
).
45.
Y.
Ozawa
,
N.
Shimizu
,
G.
Kariya
, and
Y.
Abiko
, “
Low-energy laser irradiation stimulates bone nodule formation at early stages of cell culture in rat calvarial cells
,”
Bone
22
,
347
354
(
1998
).
46.
R. V.
Silva
, Reconstruction of bone defects with calcium phosphate ceramics or low laser therapy associated with bone graft procedure. PhD thesis. Campinas State University. Institute of Biology, São Paulo, Brazil,
2006
.
You do not currently have access to this content.