Optical coherence imaging can measure hole depth in real-time (>20kHz) during laser drilling without being blinded by intense machining light or incoherent plasma emissions. Rapid measurement of etch rate and stochastic melt relaxation makes these images useful for process development and quality control in a variety of materials including metals, semiconductors, and dielectrics. The ability to image through the ablation crater in materials transparent to imaging light allows the guidance of blind hole cutting even with limited a priori knowledge of the sample. Significant improvement in hole depth accuracy with the application of manual feedback from this imaging has been previously demonstrated [P. J. L. Webster et al., Opt. Lett.35, 646 (2010)]. However, the large quantity of raw data and computing overhead are obstacles for the application of coherent imaging as a truly automatic feedback mechanism. Additionally, the high performance components of coherent imaging systems designed for their traditional application in biological imaging are costly and may be unnecessary for materials processing. In this work, we present a coherent imaging system design that costs less than a fifth of comparable commercial products. We also demonstrate streamlined image processing suited for automated feedback that increases processing speed by two orders of magnitude.

1.
P. W.
Leech
, “
Laser ablation of multilayered hot stamping foil
,”
J. Mater. Process. Technol.
209
,
4281
4285
(
2009
).
2.
V. N.
Tokarev
,
J.
Lopez
, and
S.
Lazare
, “
Modelling of high-aspect ratio microdrilling of polymers with UV laser ablation
,”
Appl. Surf. Sci.
168
,
75
78
(
2000
).
3.
A.
Kumar
,
M.
Sapp
,
J.
Vincelli
, and
M. C.
Gupta
, “
A study on laser cleaning and pulsed gas tungsten arc welding of Ti-3Al-2.5V alloy tubes
,”
J. Mater. Process. Technol.
210
,
64
71
(
2010
).
4.
M. M. A.
Khan
,
L.
Romoli
,
M.
Fiaschi
,
F.
Sarri
, and
G.
Dini
, “
Experimental investigation on laser beam welding of martensitic stainless steels in a constrained overlap joint configuration
,”
J. Mater. Process. Technol.
210
,
1340
1353
(
2010
).
5.
N. C.
Nayak
,
Y. C.
Lam
,
Y. C.
Yue
, and
A. T.
Sinha
, “
CO2-laser micromachining of PMMA: the effect of polymer molecular weight
,”
J. Micromech. Microeng.
18
,
095020
(
2008
).
6.
B.
Pratap
,
C. B.
Arnold
, and
A.
Pique
, “
Depth and surface roughness control on laser micromachined polyimide for direct-write deposition
,”
Proc. SPIE
4979
,
217
(
2003
).
7.
P. M.
Lonardo
,
D. A.
Lucca
, and
L.
De Chiffre
, “
Emerging trends in surface metrology
,”
CIRP Ann.
51
(
2
),
701
723
(
2002
).
8.
V. V.
Temnov
,
K.
Sokolowski-Tintenm
,
P.
Zhou
, and
D.
von der Linde
, “
Femtosecond time-resolved interferometric microscopy
,”
Appl. Phys. A: Mater. Sci. Process.
78
,
483
489
(
2004
).
9.
J.
Dietrich
,
M.
Brajdic
,
K.
Walther
,
A.
Horn
,
L.
Kelbassa
, and
R.
Poprawe
, “
Investigation of increased drilling speed by online high-speed photography
,”
Opt. Lasers Eng.
46
,
705
710
(
2008
).
10.
R.
Lausten
and
P.
Balling
, “
On-the-fly depth profiling during ablation with ultrashort laser pulses: A tool for accurate micromachining and laser surgery
,”
Appl. Phys. Lett.
79
,
884
886
(
2001
).
11.
P. J. L.
Webster
,
J. X. Z.
Yu
,
B. Y. C.
Leung
,
M. D.
Anderson
,
V. X. D.
Yang
, and
J. M.
Fraser
, “
In situ 24 kHz coherent imaging of morphology change in laser percussion drilling
,”
Opt. Lett.
35
,
646
648
(
2010
).
12.
A. F.
Fercher
,
W.
Drexler
,
C. K.
Hitzenberger
, and
T.
Lasser
, “
Optical coherence tomography − principles and applications
,”
Rep. Prog. Phys.
66
,
239
303
(
2003
).
13.
P. J. L.
Webster
,
J. X. Z.
Yu
,
B. Y. C.
Leung
,
M. D.
Anderson
,
T. P.
Hoult
, and
J. M.
Fraser
, “
Coaxial real-time metrology and gas assisted laser micromachining: Process development, stochastic behavior and feedback control
,”
Proc. SPIE
7590
,
759003
(
2010
).
14.
J. X. Z.
Yu
,
P. J. L.
Webster
,
B. Y. C.
Leung
, and
J. M.
Fraser
, “
High quality percussion drilling of silicon with a CW fiber laser beam
,”
Proc. SPIE
7584
,
75840W
(
2010
).
15.
P. J. L.
Webster
,
M. S.
Muller
, and
J. M.
Fraser
, “
High speed in situ depth profiling of ultrafast micromachining
,”
Opt. Express
15
,
14967
14972
(
2007
).
16.
P. J. L.
Webster
,
B. Y. C.
Leung
,
V. X. D.
Yang
, and
J. M.
Fraser
, “
Guidance of hard tissue ablation by forward viewing optical coherence tomography
,”
Proc. SPIE
7554
,
75540Z
(
2010
).
17.
M. W.
Lindner
,
P.
Andretzky
,
F.
Kiesewetter
, and
G.
Hausler
, “
Spectral Radar: Optical Coherence Tomography in the Fourier Domain
,”
Handbook of Optical Coherence Tomography
, edited by
E.
Bouma
and
G. J.
Tearney
(
Marcel Dekker
,
New York
,
2002
), pp.
335
357
.
18.
M.
Wojtkowski
,
R.
Leitgeb
,
A.
Kowalczyk
,
T.
Bajraszewski
, and
A. F.
Fercher
, “
In vivo human retinal imaging by Fourier domain optical coherence tomography
,”
J. Biomed. Opt.
7
,
457
463
(
2002
).
19.
R.
Leitgeb
,
C. K.
Hitzenberger
, and
A. F.
Fercher
, “
Performance of fourier domain vs. time domain optical coherence tomography
,”
Opt. Express
11
,
889
894
(
2003
).
20.
Thorlabs
, Optical Coherence Tomography Imaging Systems, Thorlabs Product Catalogue V20,
2010
, pp.
1353
1393
.
21.
S. H.
Yun
,
G. J.
Tearney
,
J. F.
de Boer
, and
B. E.
Bouma
, “
Motion artifacts in optical coherence tomography with frequency-domain ranging
,”
Opt. Express
12
,
2977
2998
(
2004
).
You do not currently have access to this content.