National laser safety standards have only recently been specified for laser pulse widths below 1 ns, with the publication of the ANSI Z136.1-2000 American National Standard for Safe Use of Lasers. A number of in vivo retinal injury studies using ultrashort laser pulses have been documented for pulse widths from nanoseconds to femtoseconds and having wavelengths from 1064 to 530 nm. These studies report data corresponding to the smallest retinal image diameters that can be achieved experimentally. The resulting data have been used to establish the exposure limits for small-source laser emitters. Data have shown that the thresholds decrease with pulse width and with wavelength for minimal retinal spot sizes. In this article we present measurements of the retinal lesion threshold as a function of retinal image size for 150 fs ultrashort laser pulses at 1060 nm. Retinal image size was varied from approximately 48 to 800 μm in diameter using external optics. Thresholds were determined using probit analysis of the data. The retinal spot sizes were calculated using the Gaussian beam propagation and multiple-lens formulas. The thresholds as a function of retinal image size were then compared to previously reported spot size studies. Results of our measurements show that as the retinal image diameter is increased from 48 to 800 μm, the threshold at 24 h postexposure increases from 1 to 54.1 μJ, corresponding to the fluence at the retina decreasing by a factor of five (from 56 to 11 mJ cm−2). Our results also show that as the retinal spot size increases, the radiant exposure necessary to cause a minimal visible lesion decreases, but not in proportion to the retinal image area. This decreasing radiant exposure for increasing retinal spot sizes at 150 fs follows the trends shown for previous studies with pulse duration from 30 ps to 10 s. Thus, extended sources for 150 fs and 1060 nm show no deviation from the trend of decreasing radiant exposure for increasing retinal image sizes. We conclude from our data that the current correction factors used in the laser safety standards also apply to femtosecond laser exposures between 400 and 1400 nm.

1.
E. S.
Beatrice
and
G. D.
Frisch
, “
Retinal laser damage thresholds as a function of image diameter
,”
Arch. Environ. Health
27
,
322
(
1973
).
2.
W. T.
Ham
,
W. J.
Geeraets
,
H. A.
Mueller
,
R. C.
Williams
,
A. M.
Clarke
, and
S. F.
Cleary
, “
Retinal burn thresholds for the helium-neon laser in the rhesus monkey
,”
Arch. Ophthalmol. (Chicago)
84
,
797
(
1970
).
3.
A. I.
Goldman
,
W. T.
Ham
, and
H. A.
Mueller
, “
Ocular damage thresholds and mechanisms for ultrashort pulses of both visible and infrared laser radiation in the rhesus monkey
,”
Exp. Eye Res.
24
,
45
(
1977
).
4.
R. G.
Borland
,
D. H.
Brennan
,
J.
Marshall
, and
J. P.
Viveash
, “
The role of fluorescein angiography in the detection of laser induced damage to the retina: A threshold study for Q-switched, neodymium and ruby lasers
,”
Exp. Eye Res.
27
,
471
(
1978
).
5.
N. A.
Peppers
and
A. H.
Hammond
, “
Laser damage thresholds for ocular tissues
,”
Am. Ind. Hyg. Assoc. J.
30a
,
218
(
1969
).
6.
J. A.
Zuclich
,
P. R.
Edsall
,
D. J.
Lund
,
B. E.
Stuck
,
R. C.
Hollins
,
S.
Till
,
P. A.
Smith
,
L. N.
McLin
, and
P. K.
Kennedy
, “
Variation of laser induced retinal-damage threshold with retinal image size
,”
J. Laser Appl.
12
,
74
(
2000
).
7.
F. F.
Henriques
, “
Studies of thermal injury
,”
Arch. Pathol.
43
,
489
(
1947
).
8.
R.
Birngruber
,
F.
Hillenkamp
, and
V. P.
Gabel
, “
Theoretical investigations of laser thermal retinal injury
,”
Health Phys.
48
,
781
(
1985
).
9.
D. H. Sliney and M. L. Wolbarsht, Safety with Lasers and other Optical Sources (Plenum, New York, 1980), Chap. 4, pp. 131–132, and references therein.
10.
C. P.
Cain
,
C. A.
Toth
,
G. D.
Noojin
,
V.
Carothers
,
D. J.
Stolarski
, and
B. A.
Rockwell
, “
Thresholds for visible lesions in the primate eye produced by ultrashort near-infrared laser pulses
,”
Invest. Ophthalmol. Visual Sci.
40
,
2343
(
1999
).
11.
D. H.
Sliney
, “
Laser-induced damage in optical materials
,”
NBS Spec. Publ.
669
,
355
(
1984
).
12.
D. X.
Hammer
,
E. D.
Jansen
,
M.
Frenz
,
G. D.
Noojin
,
R. J.
Thomas
,
J.
Noack
,
A.
Vogel
,
B. A.
Rockwell
, and
A. J.
Welch
, “
Shielding properties of laser-induced breakdown in water for pulse durations from 5 ns to 125 fs
,”
Appl. Opt.
36
,
5630
(
1997
).
13.
SAS Probit Procedure, SAS Institute, Cary, NC, 1996.
14.
D. J. Finney, Probit Analysis, 3rd Edition (Cambridge Univ. Press, New York, 1971).
15.
C. P.
Cain
,
C. A.
Toth
,
C. D.
DiCarlo
,
C. D.
Stein
,
G. D.
Noojin
,
D. J.
Stolarski
, and
W. P.
Roach
, “
Visible retinal lesions from ultrashort laser pulses in the primate eye
,”
Invest. Ophthalmol. Visual Sci.
36
,
879
(
1995
).
16.
C. P.
Cain
,
C. D.
DiCarlo
,
B. A.
Rockwell
,
P. K.
Kennedy
,
G. D.
Noojin
,
D. J.
Stolarski
,
D. X.
Hammer
,
C. D.
Toth
, and
W. P.
Roach
, “
Retinal damage and laser-induced breakdown produced by ultrashort pulse lasers
,”
Graefe's Arch. Clin. Exp. Ophthalmol.
234
,
S28
(
1996
).
17.
C. A.
Toth
,
K. P.
Winter
,
M. N.
McCall
,
B. A.
Rockwell
, and
C. P.
Cain
Histopathology of ultrashort pulsed laser retinal damage: Changing retinal pathology with variation in spot-size for near-infrared laser lesions
,” Laser-Tissue Interaction X: Photochemical Photothermal and Photomechanical [
Proc. SPIE
3601
,
32
(
1999
)].
18.
Y. R.
Shen
, “
Self-focusing: Experimental
,”
Prog. Quantum Electron.
4
,
1
(
1974
).
19.
M. A.
Mainster
,
T. J.
White
, and
R. G.
Allen
, “
Spectral dependence of retinal damage produced by intense light sources
,”
JOSA
60
,
848
(
1970
).
20.
C. P.
Cain
and
A. J.
Welch
, “
Measured and predicted laser-induced temperature rises in the rabbit fundus
,”
Invest. Ophthalmol. Visual Sci.
13
,
60
(
1974
).
21.
L. A.
Priebe
,
C. P.
Cain
, and
A. J.
Welch
, “
Temperature rise required for production of minimal lesions in the Macaca mulatta retina
,”
Am. J. Ophthalmol.
179
,
405
(
1975
).
22.
A. J.
Welch
and
G. D.
Polhamus
, “
Measurement and prediction of thermal injury in the retina of the rhesus monkey
,”
IEEE Trans. Biomed. Eng.
31
,
633
(
1984
).
23.
A.
Sagi
,
A.
Shitzer
,
A.
Katzir
, and
S.
Akselrod
, “
Heating of biological tissue by laser irradiation
,”
Opt. Eng.
31
,
1417
(
1992
).
24.
C. R.
Thompson
,
B. S.
Gerstman
,
S. L.
Jacques
, and
M. E.
Rogers
, “
Melanin Granule Model for Laser-Induced Thermal Damage in the Retina
,”
Bull. Math. Biol.
58
,
513
(
1996
).
25.
P. K.
Kennedy
,
J. J.
Druessel
,
J. M.
Cupello
,
S.
Till
,
B. S.
Gerstman
,
C. R.
Thomson
, and
B. A.
Rockwell
, “
Parameter sensitivity of the Thompson granular retinal damage model
,”
Proc. SPIE
3254
,
146
(
1998
).
This content is only available via PDF.
You do not currently have access to this content.