The increased use of high-power (tens of kilowatts) laser systems in numerous applications drives the need for a generalized human dose-response model for skin injuries to achieve improved fidelity for risk assessment. Advancing the probabilistic approach to assess the risk of potential laser induced skin injury allows for a quantitative analysis of uncertainty and variability. This understanding should improve the assignment of exposure limits and protective approaches. In the present study, we developed a human dose-response model for laser induced skin injuries. It consists of three sub-models; one for the mean effective dose, one for variability of the mean effective dose, and one for the angle of incidence. The mean effective dose model is a generalized form for a minimum visible lesion (MVL) threshold achieved by scaling the maximum permissible exposure in the ANSI Z136.1 standard across all applicable wavelengths, exposure durations, and injury types. The variability model accounts for differences in skin spectral absorption between humans and uncertainties in scaling for the mean effective dose, and the angle of incidence model assimilates the effects of incident angle variability into the probability of injury. Use of the dose-response parameter models (mean, variability, and incident angle) for calculating a probability of injury is detailed and comparison with empirical data is illustrated.

1.
American National Standards Institute
, “
American National Standard for Safe Use of Lasers, ANSI Standard Z136.1-2014
,”
Laser Institute of America
(
2014
).
2.
R.
Vincelette
,
G.D.
Noojin
,
C.A.
Harbert
,
K.J.
Schuster
,
A.D.
Shingledecker
,
D.
Stolarski
,
S.S.
Kumru
, and
J.W.
Oliver
, “Porcine Skin Damage Thresholds for 0.6 to 9.5 cm Beam Diameters from 1070-nm Continuous-Wave Infrared Laser Radiation,”
J. Biomed. Opt
.
19
,
035007
(
2014
)
3.
B.
Chen
,
“Experimental and Modeling Study of Thermal Response of Skin and Cornea to Infrared Wavelengths Laser Irradiation
,” Ph.D. Dissertation,
The University of Texas at Austin
(
2007
)
4.
J.W.
Oliver
,
R.
Vincelette
,
G.D.
Noojin
,
C.D.
Clark
,
C.A.
Harbert
,
K.J.
Schuster
,
A.D.
Shingledecker
,
S.S.
Kumru
,
J.
Maughan
,
N.
Kitzis
,
G.D.
Buffington
,
D.J.
Stolarski
, and
R.J.
Thomas
, “
Infrared Skin Damage Thresholds from 1319-nm Continuous-Wave Laser Exposures
,”
J. Biomed. Opt.
18
,
125002
(
2013
).
5.
J.W.
Oliver
,
D.J.
Stolarski
,
G.D.
Noojin
,
H.M.
Hodnett
,
C.A.
Harbert
,
K.J.
Schuster
,
M.F.
Foltz
,
S.S.
Kumru
,
C.P.
Cain
,
C.J.
Finkeldei
,
G.D.
Buffington
,
I.D.
Noojin
, and
R.J.
Thomas
, “
Infrared Skin Damage Thresholds from 1940-nm Continuous-Wave Laser Exposures
,”
J. Biomed. Opt.
15
,
065008
(
2010
).
6.
B.
Chen
,
D.C.
O'Dell
,
S.L.
Thomsen
,
B.A.
Rockwell
, and
A.J.
Welsh
, “
Porcine Skin ED50 Damage Thresholds for 2,000 nm Laser Irradiation
,”
Lasers Surg. Med.
37
,
373
(
2005
).
7.
E.
Ahmed
,
E.
Early
,
B.
Lund
, and
R.
Thomas
, “
Human Laser Retinal Dose-Response Model
,”
AFRL-RH-FS-TR-2018-0006
(
2018
).
8.
M.P.
DeLisi
,
M.S.
Schmidt
,
A.F.
Hoffman
,
A.M.
Peterson
,
G.D.
Noojin
,
A.D.
Shingledecker
,
A.R.
Boretsky
,
D.J.
Stolarski
,
S.S.
Kumru
, and
R.J.
Thomas
, “
Thermal Damage Thresholds for Multipe-Pulse Porcine Skin Laser Exposures at 1070 nm
,”
J. Biomed. Opt.
25
,
035001
(
2019
).
9.
R.J.
Rockwell
, Jr.
and
L.
Goldman
, “
Research on Human Skin Laser Damage Thresholds
,”
United States Air Force Aerospace Medical Division, DERM-LL-74-1003
(
1974
).
10.
Li
Zhoazhang
, “
Laser Safety, Protection Standards Reviewed
,”
Yingyong Jiguang
3
,
141
(
1986
).
11.
E. M.
Renz
and
L. C.
Cancio
,
“Acute Burn Care” in E. Savitsky and B. Eastridge
,
Combat Casualty Care, Lessons Learned from OEF and OIF
,
Borden Institute, Fort Detrick
,
Maryland
(
2012
).
12.
B.G.
Zollars
,
G.J.
Elpers
,
A.L.
Goodwin
,
E.A.
Early
,
N.J.
Gamez
, and
R.J.
Thomas
, “
Scalable Effects Simulation Environment (SESE) Version 2.5.0
,”
AFRL-RH-FS-TR-2019-0016
(
2019
).
13.
A.M.
Stoll
and
L.C.
Green
, “
The Relationship Between Pain and Tissue Damage Due to Thermal Radiation
,”
NADC-MA-5808
(
1958
).
14.
A.M.
Stoll
and
M.A.
Chianti
, “
A Method and Rating System for Evaluation of Thermal Protection
,”
NADC-MR-6809
(
1968
).
15.
A.
Arendt-Nielsen
and
P.
Bjerring
, “
Sensory and Pain Threshold Characteristics to Laser Stimuli
,”
J. Neurology, Neurosurgery, and Psychiatry
51
,
35
42
(
1988
).
16.
D.
Tata
,
V.I.
Villavicencio
,
M.C.
Cook
,
T.E.
Dayton
,
C.D.
Clark
,
C.A.
Moreno
,
J.A.
Ross
,
J.S.
Eggers
,
P.
Kennedy
,
D.
Christensen
, and
J.
Notabartolo
, “
Infra Red Laser Induced Skin Damage and Perception
,”
AFRL-HE-BR-TR-
2005
0139
(
2005
).
17.
M.P.
DeLisi
,
A.M.
Peterson
,
L.A.
Lile
,
G.D.
Noojin
,
A.D.
Shingledecker
,
D.J.
Stolarski
,
C.A.
Oian
,
S.S.
Kumru
, and
R.J.
Thomas
, “
Suprathreshold Laser Injuries in Excised Porcine Skin for Millisecond Exposures at 1070 nm
,”
J. Biomed. Opt.
23
,
125001
(
2018
).
18.
T.B.
Fitzpatrick
, “
Sun and Skin
,”
Journal de Medecine Esthetique
2
,
33
(
1975
).
19.
S.L.
Jacques
, “
Optical Properties of Biological Tissues: A Review
,”
Phys. Med. Biol.
58
,
R37
(
2013
).
20.
C.C.
Cooksey
,
D.W.
Allen
, and
B.K.
Tsai
, “
Reference Data Set of Human Skin Reflectance
,”
J. Res. Natl. Inst. Stan. Tech.
122
,
26
(
2017
).
This content is only available via PDF.
You do not currently have access to this content.