Laser systems emitting in the visible and near infrared wavelength range between 400 nm and 1400 nm represent a potential hazard for the retina. The accessible emission limits depend on the angular subtense of the apparent source which is determined by the size of the retinal image. Usually, the retinal image is calculated using geometric optical propagation methods, e.g. ray tracing techniques. In case of coherent laser radiation this might be insufficient since wave optical phenomena can influence the retinal image. Especially by the presence of apertures, diffraction needs to be taken into account. In this paper we analyse the impact of wave optics for laser safety evaluations and show the difference to geometric optical calculations. Both propagation methods are compared for relevant examples.

1.
IEC 60825-1:2014:
Safety of laser products – Part 1: Equipment classification and requirements
2.
ANSI, American National Standard for the safe use of Lasers, Z136.1-2014
3.
ICNIRP
(
2013
)
ICNIRP Guidelines on limits of exposure to laser radiation of wavelengths between 180 nm and 1,000 µm
.
Health Physics
105
(
3
):
271
295
4.
Sliney
,
D. H.
;
Mellerio
,
J.
;
Gabel
,
V. P.
&
Schulmeister
,
K.
(
2002
)
What is the meaning of threshold on laser injury experiments? Implications for human exposure limits
.
Health Physics
82
(
3
), p.
335
347
5.
Marshall
,
J.
,
Hamilton
,
A. M.
&
Bird
,
A. C.
(
1975
)
Histopathology of ruby and argon laser lesions in monkey and human retinas
.
British Journal of Ophthalmology
59
, p.
610
630
6.
Navarro
,
R.
,
Santamaria
,
J.
&
Bescos
,
J.
(
1985
)
Accommodation-dependent model of the human eye with asperics, Journal of the Optical Society of America
.
A, Optics and image science
,
2
, p.
1273
81
7.
Le Grand
,
Y.
&
El Hage
,
S.
(
1980
)
Physiological Optics
,
Springer
,
Berlin
8.
Henderson
,
R.
&
Schulmeister
,
K.
(
2004
)
Laser Safety, Inst. Of Physics Publishing
,
Bristol and Philadelphia
9.
Cain
,
C. P.
,
Noojin
,
G. D.
,
Hammer
,
D. X.
,
Thomas
,
R. J.
&
Rockwell
,
B. A.
(
1997
)
Artificial eye for in vitro experiments of laser light interaction with aqueous media
.
Journal of Biomedical Optics
,
2
(
1
), p.
88
94
10.
ZEMAX OpticStudio
;
Zemax, LLC
,
Kirkland, USA-98033 Washington
11.
TracePro
;
LAMBDA Research Corporation
,
USA-01460 Massachusetts
12.
Zinth
,
W.
&
Zinth
,
U.
(
2013
)
Optik
:
Lichtstrahlen – Wellen – Photonen
(4. Auflage), Oldenbourg
13.
VirtualLab Fusion
:
Optical Design Software from LightTrans
;
LightTrans International UG, D-07745 Jena
,
Germany
14.
Gross
,
H.
,
Blechinger
,
F.
,
Achtner
,
B.
(
2008
)
Handbook of Optical Systems
,
Survey of Optical Instruments
,
Wiley
15.
Pedrotti
,
F.
,
Pedrotti
,
L.
&
Pedrotti
,
L.
(
2017
)
Introduction to Optics
,
Cambridge University Press
16.
Bodem
,
F.
&
Reidenbach
,
H. D.
(
1976
)
Transformation of Gaussian beams by spherical and cylindrical lenses: the scalar diffraction approach
,
Optical and Quantum Electronics
8
, p.
207
211
17.
Galbiati
,
E.
(
2001
)
Evaluation of the apparent source in laser safety
,
Journal of Laser Applications
,
13
, p.
141
149
18.
Kotzur
,
S.
&
Frederiksen
,
A.
(
2018
)
Klassifizierung einfach astigmatischer Gaußstrahlen nach IEC
60825-1, StrahlenschutzPRAXIS, Heft 3
19.
Schulmeister
,
K.
(
2005
)
The ‘Apparent Source’ – A Multiple Misnomer
,
ILSC 2005 Conf. Proc
., p.
91
98
.
20.
Schulmeister
,
K.
(
2005
)
Classification of extended source products according to IEC 60825-1
,
ILSC 2015 Conf. Proc
., p.
271
280
21.
ISO 11146-1:2005,
Lasers and laser-related equipment – Test methods for laser beam widths, divergence angles and beam propagation ratios
This content is only available via PDF.
You do not currently have access to this content.