The increasing complexity of laser systems, e.g. LiDAR systems and medical devices, which combine scanned and pulsed light sources, complicates their evaluation in compliance with the current laser safety standard. In addition, the safety standard is becoming increasingly more complex and requires thorough background knowledge. We propose a tool that evaluates ocular safety of laser systems based on damage modelling. Therefore ray tracing software, which takes into account the specific optical design, is combined with damage predictions e.g. based on the Arrhenius integral in the case of thermal damage. The potential for adopting this easy-to-use software package as an alternative to the laser safety standard is discussed. For a complete hazard evaluation, we aim to include damage modelling in the photochemical, thermomechanical and photomechanical regimes. This approach might be particularly attractive for manufacturers to improve their products optical design in terms of eye safety.

1.
N.
Heussner
,
S.
Bogatscher
, and
W.
Stork
, “
Optimizing flying-spot display designs based on the upcoming edition of the laser safety standard
,”
Journal of the Society for Information Display
, vol.
22
, no.
1
, pp.
9
17
,
2014
.
2.
A.
Frederiksen
,
R.
Fieß
,
W.
Stork
,
S.
Bogatscher
, and
N.
Heußner
, “
Eye safety for scanning laser projection systems
,”
Biomedizinische Technik/Biomedical Engineering
, vol.
57
, no.
3
, pp.
175
184
,
2012
.
3.
T.
Fersch
,
R.
Weigel
, and
A.
Koelpin
, “
Challenges in miniaturized automotive long-range lidar system design
,” in
Three-Dimensional Imaging, Visualization, and Display 2017
, vol.
10219
, p.
102190T
, International Society for Optics and Photonics,
2017
.
4.
T.
Beuth
,
D.
Thiel
, and
M. G.
Erfurth
, “
The hazard of accommodation and scanning lidars
,” in
Optical Instrument Science, Technology, and Applications
, vol.
10695
, p.
1069506
, International Society for Optics and Photonics,
2018
.
5.
International Electrotechnical Commission
,
IEC 60825-1:2014 Safety of laser products - Part 1: Equipment classification and requirements
.
Geneva
:
IEC
, 3. ed.,
2014
.
6.
N.
Heussner
and
W.
Stork
, “
Damage evaluation of the human eye for different laser sources– connecting ray tracing and finite volume calculations
,”
Journal of Medical and Bioengineering
, vol.
4
, no.
6
,
2015
.
7.
International Commission on Non-Ionizing Radiation Protection
, “
ICNIRP guidelines on limits of exposure to laser radiation of wavelengths between 180 nm and 1,000 µm
,”
Health physics
, vol.
105
, no.
3
, pp.
271
295
,
2013
.
8.
N.
Heussner
,
R.
Reppich
, and
A.
Frederiksen
, “
Considering the movement of the laser source for classification in iec 60825-1
,” in
International Laser Safety Conference
, vol.
2017
, pp.
280
284
, LIA,
2017
.
9.
S.
Ramos
,
M.
Reh
,
G.
Zeck
, and
N.
Heussner
, “
Evaluation of short pulse laser damage to the retinal pigment epithelium layer: a key point for the assessment of devices using the nanosecond regime
,” in
Biophotonics: Photonic Solutions for Better Health Care VI
, vol.
10685
, p.
106850H
, International Society for Optics and Photonics,
2018
.
10.
A. R.
Menendez
,
F. E.
Cheney
,
J. A.
Zuclich
, and
P.
Crump
, “
Probability-summation model of multiple laser-exposure effects
.,”
Health physics
, vol.
65
, no.
5
, pp.
523
528
,
1993
.
11.
C. D.
Clark
and
G. D.
Buffington
, “
On the probability summation model for laser-damage thresholds
,”
Journal of Biomedical Optics
, vol.
21
, no.
1
, p.
015006
,
2016
.
12.
B. J.
Lund
,
D. J.
Lund
, and
P. R.
Edsall
, “
Damage threshold from large retinal spot size repetetive-pulse laser exposures
,” in
International Laser Safety Conference
, vol.
2009
, pp.
84
87
, LIA,
2009
.
13.
N.
Heußner
,
Untersuchung von Augengefährdungen durch scannende Lasersysteme zur Unterstützung von Entwurfsprozessen
.
Logos Verlag Berlin GmbH
,
2015
.
14.
N.
Heussner
,
M.
Vagos
,
M. S.
Spitzer
, and
W.
Stork
, “
A prediction model for ocular damage– experimental validation
,”
Journal of thermal biology
, vol.
52
, pp.
38
44
,
2015
.
15.
N.
Heussner
,
L.
Holl
,
T.
Nowak
,
T.
Beuth
,
M. S.
Spitzer
, and
W.
Stork
, “
Prediction of temperature and damage in an irradiated human eyeutilization of a detailed computer model which includes a vectorial blood stream in the choroid
,”
Computers in biology and medicine
, vol.
51
, pp.
35
43
,
2014
.
16.
R.
Henderson
and
K.
Schulmeister
,
Laser safety
.
CRC Press
,
2003
.
17.
K.
Schulmeister
,
B.
Seiser
,
J.
Husinsky
,
M.
Jean
,
B.
Fekete
, and
L.
Farmer
, “
Damage thresholds for scanned exposure of the retina
,” in
International Laser Safety Conference
, vol.
2009
, pp.
79
83
,
LIA
,
2009
.
18.
M. H.
Niemz
,
Laser-tissue interactions: fundamentals and applications
.
Springer Science & Business Media
,
2013
.
19.
R. D.
Glickman
, “
Phototoxicity to the retina: mechanisms of damage
,”
International journal of toxicology
, vol.
21
, no.
6
, pp.
473
490
,
2002
.
20.
P. K.
Kennedy
, “
A first-order model for computation of laser-induced breakdown thresholds in ocular and aqueous media. i. theory
,”
IEEE Journal of Quantum Electronics
, vol.
31
, no.
12
, pp.
2241
2249
,
1995
.
21.
P. K.
Kennedy
, “
A first-order model for computation of laser-induced breakdown thresholds in ocular and aqueous media. ii. comparison to experiment
,”
IEEE Journal of Quantum Electronics
, vol.
31
, no.
12
, pp.
2250
2257
,
1995
.
22.
C. P.
Cain
,
R. J.
Thomas
,
G. D.
Noojin
,
D. J.
Stolarski
,
P. K.
Kennedy
,
G. D.
Buffington
, and
B. A.
Rockwell
, “
Sub-50-fs laser retinal damage thresholds in primate eyes with group velocity dispersion, self-focusing and low-density plasmas
,”
Graefe’s Archive for Clinical and Experimental Ophthalmology
, vol.
243
, no.
2
, pp.
101
112
,
2005
.
23.
B. S.
Gerstman
,
C. R.
Thompson
,
S. L.
Jacques
, and
M. E.
Rogers
, “
Laser induced bubble for-mation in the retina
,”
Lasers in Surgery and Medicine: The Official Journal of the American Society for Laser Medicine and Surgery
, vol.
18
, no.
1
, pp.
10
21
,
1996
.
24.
J.
Neumann
and
R.
Brinkmann
, “
Boiling nucleation on melanosomes and microbeads transiently heated by nanosecond and microsecond laser pulses
,”
Journal of biomedical optics
, vol.
10
, no.
2
, p.
024001
,
2005
.
25.
J.
Neumann
, “
Mikroskopische untersuchungen zur laserinduzierten blasenbildung und-dynamik an absorbierenden mikropartikeln
,”
2005
.
26.
R.
Brinkmann
,
G.
Hüttmann
,
J.
Rögener
,
J.
Roider
,
R.
Birngruber
, and
C. P.
Lin
, “
Origin of retinal pigment epithelium cell damage by pulsed laser irradiance in the nanosecond to microsecond time regimen
,”
Lasers in Surgery and Medicine: The Official Journal of the American Society for Laser Medicine and Surgery
, vol.
27
, no.
5
, pp.
451
464
,
2000
.
27.
J.
Roegener
, “Schadensmechanismus bei der laserbestrahlung des retmalen pigmentepithels mit nano-und mikrosekundenpulsen,”
University of Hamburg, Diploma-work
,
1998
.
28.
J.
Roegener
,
R.
Brinkmann
, and
C. P.
Lin
, “
Pump-probe detection of laser-induced microbubble formation in retinal pigment epithelium cells
,”
Journal of Biomedical Optics
, vol.
9
, no.
2
, pp.
367
372
,
2004
.
29.
G.
Schuele
,
M.
Rumohr
,
G.
Huettmann
, and
R.
Brinkmann
, “
Rpe damage thresholds and mechanisms for laser exposure in the microsecond-to-millisecond time regimen
,”
Investigative ophthalmology & visual science
, vol.
46
, no.
2
, pp.
714
719
,
2005
.
30.
K.
Schulmeister
,
J.
Husinsky
,
B.
Seiser
,
F.
Edthofer
,
B.
Fekete
,
L.
Farmer
, and
D. J.
Lund
, “
Ex vivo and computer model study on retinal thermal laser-induced damage in the visible wavelength range
,”
Journal of Biomedical Optics
, vol.
13
, no.
5
, p.
054038
,
2008
.
31.
C. D.
Clark
,
M. L.
Denton
, and
R. J.
Thomas
, “
Mathematical model that describes the transition from thermal to photochemical damage in retinal pigment epithelial cell culture
,”
Journal of Biomedical Optics
, vol.
16
, no.
2
, p.
020504
,
2011
.
32.
K.
Schulmeister
and
M.
Jean
, “
Manifestation of the strong non-linearity of thermal injury
,” in
International Laser Safety Conference
, vol.
2011
, pp.
201
204
, LIA,
2011
.
33.
K.
Schulmeister
,
B. E.
Stuck
,
D. J.
Lund
, and
D. H.
Sliney
, “
Review of thresholds and recommendations for revised exposure limits for laser and optical radiation for thermally induced retinal in-jury
,”
Health Physics
, vol.
100
, no.
2
, pp.
210
220
,
2011
.
34.
R.
Birngruber
,
F.
Hillenkamp
,
V.
Gabel
, et al, “
Theoretical investigations of laser thermal retinal injury
,”
Health Phys
, vol.
48
, no.
6
, pp.
781
796
,
1985
.
35.
V. G.
Dmitriev
,
V.
Emel’yanov
,
M.
Kashintsev
,
V. V.
Kulikov
,
A.
Solov’ev
,
M.
Stel’makh
, and
O. B.
Cherednichenko
, “
Nonlinear perception of infrared radiation in the 800–1355 nm range with human eye
,”
Soviet Journal of Quantum Electronics
, vol.
9
, no.
4
, p.
475
,
1979
.
36.
C.
Schwarz
,
R.
Sharma
,
M.
Keller
,
D. R.
Williams
, and
J. J.
Hunter
, “
Intense ultrashort pulsed light in the infrared selectively damages putative s cones
,”
Investigative Ophthalmology & Visual Science
, vol.
58
, no.
8
, pp.
4301
4301
,
2017
.
This content is only available via PDF.
You do not currently have access to this content.