Computational modeling of laser-tissue interaction in the retina can be used to predict the thermal response to a laser exposure. For in vivo photochemical damage threshold experiments, where temperature rise in retinal tissue cannot be conveniently measured, modeling was used to predict retinal temperature response. Laser exposures from sixteen in vivo experiments with wavelengths in the visible band were selected to represent a wide range of powers and exposure durations. It is hypothesized that photochemical damage mechanisms were responsible for changes to subjects’ retinal tissue and that thermal response is not a significant contribution to this observed damage.

Results from the model predicted peak temperature responses of less than one Kelvin in the RPE layer of the retina where the largest temperature rise would be expected. These findings support the claim that changes to retinal tissue were not directly caused by a thermally induced mechanism.

1.
Van Norren
,
D.
, and
Gorgels
,
T.G.M.F.
(
2011
),
The action spectrum of photochemical damage to the retina: A review of monochromatic threshold data
,
Photochemistry and Photobiology
,
87
,
747
753
.
2.
Hunter
,
J.J.
,
Morgan
,
J.I.
,
Merigan
,
W.H.
,
Sliney
,
D.H.
,
Sparrow
,
J.R
, &
Williams
,
D.R.
(
2012
)
The susceptibility of the retina to photochemical damage from visible light Progress in retinal and eye research
,
31
(
1
),
28
42
.
3.
Schwarz
,
C.
,
Sharma
,
R.
,
Fischer
,
W.S.
,
Chung
,
M.
,
Palczewaska
,
G.
Palczewski
,
K.
,
Williams
,
D.R.
, and
Hunter
J.J.
(
2016
)
Safety assessment in macaques of light exposures for functional two-photon ophthalmoscopy in humans
,
Biomedical Optics Express
7
(
12
),
5148
5169
.
4.
Denton
,
M. L.
,
Clark
,
C. D.
,
Foltz
,
M. S.
,
Schuster
,
K. J.
,
Noojin
,
G. D.
,
Estlack
,
L. E.
, &
Thomas
,
R. J.
(
2010
).
In-vitro retinal model reveals a sharp transition between laser damage mechanisms
.
Journal of biomedical optics
,
15
(
3
),
030512
030512
.
5.
Peaceman
,
D. W.
&
Rachford
,
H. H.
(
1955
)
The numerical solution of parabolic and elliptic differential equations
,
J. Soc. Indust and Appl Math
,
3
(
1
),
28
41
.
6.
Mainster
,
M. A
,
White
,
T. J.
,
Tips
,
J. H.
&
Wilson
,
P. W.
(
1970
)
Transient thermal behavior in biological systems
,
Math. Biophysic
,
32
,
303
314
.
7.
Takata
,
A. N.
,
Goldfinch
,
L.
,
Hinds
,
J. K.
,
Kuan
,
L. P.
,
Thomopoulis
,
N.
, &
Weigandt
,
A.
(
1974
)
Thermal model of laser-induced eye damage
,
IITRI J-TR-74-6324, 1-N35
.
8.
Clark
,
C.D.
,
Irvin
,
L.J.
,
Maseberg
,
P.D.S.
,
Buffington
,
G.D.
,
Thomas
,
R.J.
,
Edwards
,
M.L.
, &
Stolarski
,
J.
(
2008
).
BTEC Thermal Model
(Report No. AFRL-RH-BR-TR-2008-0006).
Air Force Research Laboratory
,
San Antonio
.
9.
Birngruber
,
R.
,
Hillenkamp
,
F.
&
Gabel
V. P.
(
1985
)
Theoretical investigations of laser thermal retinal injury
,
Health Physics
,
48
(
6
),
781
786
.
10.
Welch
,
A. J..
&
Van Gernert
,
M.
(
1995
) Thermal response of tissue to optical radiation,
Plenum Press
,
New York., NY
.
11.
Welch
,
A J.
&
Polhamus
,
G. D.
(
1984
)
Measurement and prediction of thermal injury in the retina of the rhesus monkey
,
IEEE Trans. BME
,
BME-31
(
10
),
633
644
.
12.
Mainster
,
M. A
,
White
,
T. J.
,
Tips
,
J. H.
&
Wilson
,
P. W.
(
1970
)
Retinal temperature increases produced by intense light sources
,
JOSA
60
(
2
),
264
271
.
13.
Maher
,
E. F.
(
1978
).
Transmission and absorption coefficients for ocular media of the rhesus monkey (No. SAM-TR-78-32). School of Aerospace Medicine, Brooks AFB, TX
.
14.
Boettner
E. A
(
1967
)
Spectral transmission of the eye
,
USAF Technical Report AF41(609)-2966, Univ. Mich.
,
Ann Arbor, MI
,
1
37
.
15.
Denton
,
M.L.
,
Noojin
,
G.D.
,
Foltz
,
M.S.
,
Clark
,
C.D.
,
Estlack
,
L.E.
,
Rockwell
,
B.A
, and
Thomas
,
R.J.
(
2011
)
Spatially correlated microthermography maps threshold temperature in laser-induced damage
.
Journal of Biomedical Optics
,
16
(
3
),
036003
11
.
This content is only available via PDF.
You do not currently have access to this content.