Laser safety guidelines for the eye have been established based primarily on an understanding of the laser radiant exposure required to injure ocular tissue. Thresholds for laser-induced injury have been determined for in vivo retinal exposures, for ex vivo exposures of retinal explants, and for in vitro exposure of cultured cells. Computer models of laser-tissue interactions have been successful in predicting injury thresholds to augment and expand the range of experimentally determined injury data. A comparison of the thresholds determined by these differing methods requires that assumptions be made to ensure a common injury endpoint and a common expression of the dose which is best given as retinal radiant exposure. This paper will consider the integration of these various data into a common basis for support of the guidelines.

1.
Lund
,
D.J.
,
The new maximum permissible exposure: A biophysical basis, in Laser Safety: Tools and Training
,
K.
Barret
, Editor
2014
,
CRC press
:
Boca Raton
, p.
145
175
.
2.
Payne
,
D.J.
, et al,
Cavitation thresholds in the rabbit retina pigmented epithelium
.
SPIE
,
1999
.
3601
: p.
27
31
.
3.
Roegener
,
J.
,
R.
Brinkmann
, and
C.P.
Lin
,
Pump-probe detection of laser induced microbubble formation in retinal pigment epithelium cells
.
J. Biomed. Opt.
,
2004
.
9
(
2
): p.
367
371
. doi:
4.
Lee
,
H.
, et al,
Optical detection of intracellular cavitation during selective laser targeting of the retinal pigment epithelium: Dependence of cell death mechanism on pulse duration
.
J. Biomed. Opt.
,
2007
.
12
(
6
): p.
064034
.
5.
Kelly
,
M.W.
,
Intracellular cavitation as a mechanism of short-pulse laser injury to the retinal pigment epithelium
,
1997
, PhD Thesis,
Tufts University
:
Medford, MA
.
6.
Schiile
,
G.
, et al,
RPE damage thresholds and mechanisms for laser exposure in the microsecond-to-millisecond time regimen
.
IOVS
,
2005
.
46
(
2
): p.
714
719
.
7.
Brinkmann
,
R.
, et al,
Origin of retinal pigment epithelial cell damage by pulsed laser irradicmce in the nanosecond to microsecond time regimen
.
Lasers in Surgery and Medicine
,
2000
.
27
: p.
451
464
. doi:
8.
Schulmeister
,
Κ.
, et al,
Ex vivo and computer model study on retinal thermal laser-induced damage in the visible wavelength range
.
J. Biomed. Opt.
,
2008
.
13
(
5
): p.
054038
. doi:
9.
Neumann
,
J.
and
R.
Brinkmann
,
Cell disintegration by laser-induced transient microbubbles and its simultaneous monitoring by interferometry
.
JBO
,
2006
.
11
(
4
): p.
041112
. doi:
10.
Alt
,
C.
, et al,
Monitoring intracellular cavitation during selective targeting of the pigment epithelium
.
SPIE
,
2003
.
4951
: p.
48
55
.
11.
Lin
,
C.P.
, et al,
Selective cell killings by microparticle absorption of pulsed laser radiation
.
IEEE J. Select. Topics Quantum Electron.
,
1999
.
5
(
4
): p.
963
968
. doi:
12.
Pearce
,
J.
and
S.
Thomsen
,
Rate process analysis of thermal damage, in Opticalthermal response of laser-irradiated tissue
,
A.J.
Welch
and
MJ.C.
Van Gemert
, Editors.
1995
,
Plenum Press
:
New York
. p.
561
606
.
13.
Gibbons
,
W.D.
and
R.G.
Allen
,
Retinal damage from long-term exposure to laser radiation
.
Invest ophthalmol
,
1977
.
16
: p.
521
629
.
14.
Griess
,
G.A.
,
M.F.
Blankenstein
, and
G.G.
Williford
,
Ocular damage from multiple-pulse laser exposure
.
Health Physics
,
1980
.
39
: p.
921
927
. doi:
15.
Zuclich
,
J.A.
, et al,
New data on the variation of laser-induced retinal damage threshold with retinal image size
.
JLA
,
2008
.
20
(
2
): p.
83
88
.
16.
Cain
,
C.P.
, et al,
Visible retinal Lesions from ultrashort laser pulses in the primate eye
.
IOVS
,
1995
.
36
(
5
): p.
879
888
.
17.
Lund
,
B.J.
,
D.J.
Lund
, and
P.R
Edsall
,
Laser-induced retinal damage threshold measurements with wavefront correction
.
Journal of Biomedical Optics
,
2008
.
13
(
6
): p. 064011. doi:
18.
Connolly
,
J.S.
,
H.W.
Hemstreet
, and
D.
Egbert
,
Ocular hazards of picosecond and repetitive-pulsed lasers, Volume II Argon Ion Laser (514.5 nm)
,
1978
, Technology Incorporated Final Report, USAF School of Aerospace Medicine Contract No. F41609-73-C-0016: Brooks AFB, TX.
19.
Frisch
,
G.D.
,
E.S.
Beatrice
, and
R.C.
Holsen
,
Comparative study of argon and ruby retinal damage thresholds
.
Invest ophthalmol
,
1971
.
10
: p.
911
919
.
20.
Lund
,
D.J.
, et al,
Variation of laser-induced retinal injury with retinal irradiated area: 0.1 s, 514 nm exposures
.
J. Biomed. Opt.
,
2007
.
12
(
2
): p. 06180. doi:
21.
Zuclich
,
J.A.
, et al,
Research on the ocular effects of laser radiation
,
1979
, USAF School of Aerospace Medicine Report SAM-TR-79-4: Brooks AFB, TX.
22.
Lund
,
B.J.
,
DJ.
Lund
, and
M.L.
Holmes
, Retinal damage thresholds in the 1 ns to 100 ns exposure duration range, in
Proceedings of the ILSC20W
,
Laser Institute of America
:
San Jose, CA
. p.
183
186
.
23.
Lund
,
B.J.
,
D.J.
Lund
, and
P.R
Edsall
,
Damage threshold from large retinal spot size repeitive-pulse laser exposures
.
Health Physics
,
2014
.
107
(
4
): p.
xx
xx
. doi:
24.
Lund
,
B.J.
, et al,
Laser-induced retinal damage threshold for repetitive-pulse exposure to 100-μs pulses
.
JBO
,
2014
.
19
(
10
): p.
105006
. doi:
This content is only available via PDF.
You do not currently have access to this content.