Advanced imaging techniques and proteomic technology continue to push the boundaries for diagnosing and understanding retinal laser lesion exposures. We conducted retinal imaging in the rhesus macaque to compare the appearance of suprathreshold laser lesions in the macula from both photothermal (532 nm, 100 ms) and photomechanical (532 nm, 9 ns) insult using five different imaging systems: three clinically approved systems; Heidelberg Spectralis SD-OCT-SLO, Heidelberg HRT3 cSLO, and Topcon Fundus camera, and two experimental systems; multispectral using a fundus camera and hyperspectral detection using a PSI Inc. LSLO. In addition to imaging, blood plasma samples were acquired before and after (6 and 24 hrs) laser exposure to search for biomarkers occurring from two different laser damage mechanisms. Imaging results should help identify the best potential imaging systems for capturing retinal laser lesions from photothermal or photomechanical injury. The proteomics results will assist in understanding the elicited molecular pathways involved in damage response to the two types of retinal laser insult, and may be used to hallmark approaches for potential treatment options.

1.
Glickman
,
R.D.
(
2002
)
Phototoxicity to the retina: Mechanisms of damage
,
Journal of Toxicology
,
21
,
473
490
2.
Drexler
,
W.
,
Liu
,
M
,
Kumar
,
A.
,
Kamali
,
T.
,
Unterhuber
,
A.
,
Leitgeb
,
R.A.
, (
2004
),
Optical coherence tomography today: speed, contrast, and multimodality
,
Journal of Biomedical Optics
,
19
(
7
),
071412
3.
Brar
,
M.
,
Kozak
,
I.
, et al (
2009
),
Correlation between spectral-domain optical coherence tomography and fundus autofluorescence at the margins of geographic atrophy
,
American Journal of Ophthalmology
,
148
(
3
),
439
444
4.
Greenberg
,
J.P.
,
Dunker
,
T.
, et al, (
2013
),
Quantitative fundus autofluorescence in healthy eyes
,
Investigative Ophthalmology and Visual Science
,
54
(
8
),
5684
5693
5.
Weiter
,
J.J.
,
Delori
,
F. C.
, et al, (
1986
),
Retinal pigment epithelial lipofuscin and melanin and choridal melanin in human eyes
,
Investigative Ophthalmology and Visual Science
,
27
(
2
),
145
152
6.
Morgan
,
J.I.W.
,
Hunter
,
J.J.
, et al, (
2009
),
The Reduction of retinal autofluorescence caused by light exposure
,
Investigative Ophthalmology and Visual Science
,
50
(
12
),
6015
6022
7.
Johnson
,
W.R.
,
Wilson
,
D.W.
, et al, (
2007
),
Snapshot hyperspectral imaging in ophthalmology
,
Journal of Biomedical Optics
,
12
(
1
),
14036
14043
8.
Valdes
,
P.
,
Jacobs
,
V.L.
, et al, (
2013
),
System and methods for wide-field quantitative fluorescence imaging during neurosurgery
,
Optics Express
,
38
(
15
),
2786
2788
9.
Mazhar
,
A.
,
Saggese
,
S.
, et al, (
2014
),
Noncontact imaging of burn depth and extent in a porcine model using spatial frequency domain imaging
,
Journal of Biomedical Optics
,
19
(
8
),
086019
10.
Lu
,
G.
,
Fei
,
B.
, (
2014
),
Medical hyperspectral imaging: a review
,
Journal of Biomedical Optics
,
19
(
1
),
010901
11.
Wilson
,
R.H.
,
Nadeau
,
K.P.
, et al, (
2014
),
Quantitative short-wave infrared multispectral imaging of in vivo tissue optical properties
,
Journal of Biomedical Optics
,
19
(
8
),
086011
12.
Delori
,
F.C.
, (
1988
),
Non-invasive technique for oximetry of blood in retinal vessels
,
Applied Optics
,
27
(
6
),
1113
1125
13.
Ramella-Roman
,
J.C.
,
Mathews
,
S.A.
, (
2007
),
Spectroscopic measurements of oxygen saturation I the retina
,
IEEE Journal of Selected Topics in Quantum Electronics
,
13
(
6
),
1697
1703
14.
Prahl
,
S.
,
Jacques
,
S.
, (
2014
),
Tabulated molar Extinction coefficient for Hemoglobin in water
, http://omlc.org/spectra/hemoglobinsummary
15.
Boas
,
D.A.
,
Dunn
,
A.K.
, (
2010
),
Laser speckle constrast imaging in biomedical optics
,
Journal of Biomedical Optics
,
15
(
1
),
011109
16.
Cheng
,
H.
,
Duong
,
T. Q.
, (
2007
),
Simplified laser-speckle-imaging analysis method and its application to retinal blood flow imaging
,
Optics Letters
,
32
(
15
),
2188
2190
17.
Hammer
,
D. X.
,
Ferguson
,
R.D.
, et al, (
2006
),
Line-scanning laser ophthalmoscope
,
Journal of Biomedical Optics
,
11
(
4
),
041126
This content is only available via PDF.
You do not currently have access to this content.