The development of optical coherence tomography (OCT) has led to a wide variety of new ophthalmic diagnostic instruments. Also, with the development of reliable, cost-effective ultra-short laser systems, a number of new laser assisted ophthalmic surgical techniques have evolved. The surgical systems are used in refractive surgery and cataract surgery. ISO Standard 15004-2 on ophthalmic instrument safety requires the assurance of safe exposure of non-target tissues, although, of course, the irradiance of target tissues will generally exceed exposure limits. Examples of specific studies related to limiting exposure to the cornea, lens and retina will be provided.

1.
Mainster
,
M.A.
,
Sliney
,
D.H.
,
Belcher
,
C.D.
, III
, and
Buzney
,
S.M.
,
Laser photodisruptors, damage mechanisms, instrument design and safety
.
Ophthalmology
,
90
(
8
):
937
944
(
1983
).
2.
Sliney
,
D.H.
, YAG laser safety, in; YAG Laser Ophthalmic Microsurgery (
S.L.
Trokel
, Ed.),
Appleton-Century-Crofls
,
Norwalk
, pp.
67
84
, (
1983
).
3.
Sliney
,
D.H.
,
Neodymium:YAG laser safety considerations
, in [
R. M.
Klapper
, Ed.]
Neodymium:YAG Laser Microsurgery: Fundamental Principles and Clinical Applications
,
Int. Opthal Clin.
,
23
(
3
):
151
157
, (
1985
).
4.
Fujimoto
JG
,
Lin
WZ
,
Ippen
EP
,
Puliafito
CA
,
Steinert
RF
.
Time-resolved studies of Nd:YAG laser-induced breakdown. Plasma formation, acoustic wave generation, and cavitation
.
Invest Ophthalmol Vis Sci.
26
(
12
):
1771
7
(
1985
).
5.
Vogel
A
,
Capon
MR
,
Asiyo-Vogel
MN
,
Bimgruber
R.
Intraocular photodisruption with picosecond and nanosecond laser pulses: tissue effects in cornea, lens, and retina
.
Invest Ophthalmol Vis Sci.
35
(
7
):
3032
44
(
1994
).
6.
Vogel
A
,
Busch
S
,
Jungnickel
K
,
Bimgruber
R
.
Mechanisms of intraocular photodismption with picosecond and nanosecond laser pulses
.
Lasers Surg Med.
15
(
1
):
32
43
(
1994
).
7.
Vogel
A
,
Hentschel
W
,
Holzfuss
J
,
Lauterbom
W.
Cavitation bubble dynamics and acoustic transient generation in ocular surgery with pulsed neodymium: YAG lasers
.
Ophthalmology
.
93
(
10
):
1259
69
(
1986
).
8.
Zysset
B
,
Fujimoto
JG
,
Puliafito
CA
,
Bimgruber
R
,
Deutsch
TF.
Picosecond optical breakdown: tissue effects and reduction of collateral damage—a review
.
Lasers Surg Med.
9
(
3
):
193
204
(
1989
).
9.
Kessler
,
R.
, and
Sliney
,
DH
,
Studies of intraocular plasma shielding during corneal laser surgery
,
ILSC-2003 Conference Proceedings
, pp
326
335
,
Orlando, Laser Institute of America
,
2003
.
10.
Touboul
D
,
Salin
F
,
Mortemousque
B
,
Courjaud
A
,
Chabassier
P
,
Mottay
E
,
Leger
F
,
Colin
J.
[Tissue and mechanical effects observed with an experimental femtosecond laser micro-keratome for corneal refractive surgery]
,
J Fr Ophtalmol.
28
(
3
):
274
84
; in French (
2005
).
11.
Sliney
,
D.H.
, and
Wolbarsht
,
M.L.
,
Safety with Lasers and Other Optical Sources—a Comprehensive Handbook
,
New York
,
Plenum Publishing Corp.
, (
1980
).
12.
American National Standards Institute (ANSI)
,
American National Standard for the Safe Use of Lasers
, ANSIZ136.1 (
2007
)
13.
Sliney
D
,
Aron-Rosa
D
,
DeLori
F
,
Fankhouser
F
,
Landry
R
,
Mainster
M
,
Marshall
J
,
Rassow
B
,
Stuck
B
,
Trokel
S
,
West
T
, and
Wolfe
M
:
Adjustment of guidelines for exposure of the eye to optical radiation from ocular instruments: a statement from a task group of the International Commission on Non-Ionizing Radiation Protection
,
Applied Optics
44
(
11
):
2162
2176
,
2005
.
14.
American Conference of Governmental Industrial Hygienists (ACGIH)
, 2012 TLVs and BEls Based on the Documentation of the Threshold Limit Values for Chemical Substances and Physical Agents & Biological Exposure Indices,
Cincinnati
,
ACGIH
,
2012
.
15.
ACGIH
(
2010
), Documentation for the Threshold Limit Values, 9th Edn.,
American Conference of Governmental Industrial Hygienists
,
Cincinnati, OH
.
16.
International Commission on Non-Ionizing Radiation Protection
, (
1997
),
Guidelines on limits of exposure to broad-band incoherent optical radiation (0.38 to 3 μm)
.
Health Phys.
73
:
539
554
.
17.
International Commission on Non-Ionizing Radiation Protection
, (
2000
),
Revision of guidelines on limits of exposure to laser radiation of wavelengths between 400 nm and 1.4 μm
,
Health Physics
,
79
(
4
):
431
440
.
18.
World Health Organization [WHO]
, (
1982
),
Environmental Health Criteria No. 23, Lasers and Optical Radiation, joint publication of the United Nations Environmental Program, the International Radiation Protection Association and the World Health Organization
,
Geneva
.
19.
International Electrotechnical Commission (IEC)
, (
2007
),
Safety of Laser Products-Part I: Equipment Classification, Requirements and Users Guide
. IEC Publication 60825-1, Edn. 2,
Geneva
, IEC [available from ANSI, 11 West 42nd Street, New York, NY 10036].
20.
Center for Devices and Radiological Health
(CDRH,
1995
), Laser Product Performance Standard, Title 21, Code of Federal Regulations, Part 1040,
Washington, DC
,
Government Printing Office
.
21.
Center for Devices and Radiological Health, U.S. Food and Drug Administration
, “
Laser Products—Conformance with IEC 60825-1, Edn. 2 and IEC 60601-2-22; Final Guidance for Industry and FDA
,”
Laser Notice No. 50
(
Rockville, MD
:
FDA/CDRH Office of Compliance
,
2007
),
22.
International Standards Organization (ISO)
, (
2007
), International Standard, ISO 15004-2:2007,
Ophthalmic Instruments—Fundamental requirements and test methods—Part 2: Light hazard protection
,
Geneva
, ISO.
23.
Maher
,
E.F.
,
Transmission and Absorption Coefficients for Ocular Media of the Rhesus Monkey
,
Report SAM-TR-78-32, USAF School of Aerospace Medicine, Brooks Air Force Base
,
Texas
(
1978
).
24.
Bargeron
,
C.B.
,
Farrell
,
R.A.
,
Green
,
W.R.
,
McCally
,
R.L.
,
Corneal damage from exposure to IR radiation: Rabbit endothelial damage thresholds
,
Health Physics
,
40
:
855
862
(
1981
).
25.
McCally
,
R.L.
,
Farrell
,
R.A.
,
Bargeron
,
C.B
,
Cornea epithelial damage thresholds in rabbits to Tm:YAG laser radiation at 2.02 micrometers
,
Lasers in Surgery and Medicine
,
12
:
598
603
.
26.
McCally
,
R.L.
,
Bargeron
,
C.B.
,
Epithelial damage thresholds for multile-pulse exposures to 80 ns pulses of CO2 laser radiation
,
Health Physics
,
80
(
1
):
41
46
(
2001
).
27.
McCally
,
R.L.
,
Bargeron
,
C.B.
,
Epithelial damage thresholds for sequences of 80 ns pulses of 10.6 micrometer laser radiation
,
J Laser Appl
,
10
(
3
):
137
139
(
1998
).
28.
Bargeron
,
C.B.
,
Deters
,
D.J.
,
Farrell
,
R.A.
,
McCally
,
R.L.
,
Epithelial damage in rabbit corneas exposed to CO2 laser radiation
,
Health Physics
,
56
(
1
):
85
95
,
1989
.
29.
Zuclich
,
J.A.
,
Lund
,
D.J.
, and
Stuck
,
B.E.
,
Wavelength dependence of ocular damage thresholds in the near-IR to far IR transition region: proposed revisions to MPEs
,
Health Phys.
92
(
1
):
15
23
(
2007
).
30.
Cain
,
C.P.
,
C. A.
Toth
,
R. J.
Thomas
,
G. D.
Noojin
,
V.
Carothers
,
D. J.
Stolarski
,
B. A.
Rockwell
, “
Comparison of macular versus paramacular retinal sensitivity to femtosecond laser pulses
”,
J. Biomed. Optics
5
(
3
),
315
320
(
2000
).
31.
C.P.
Cain
,
C.A.
Toth
,
G.D.
Noojin
,
V.
Carothers
,
D.J.
Stolarski
and
B.A.
Rockwell
,
Thresholds for Visible Lesions in the Primate Eye Produced by Ultrashort Near-Infrared Laser Pulses
,
Invest. Ophthal Visual Sci
,
40
,
2343
2349
(
1999
).
32.
Goldman
,
AI
,
Ham
WT Jr.
, and
Mueller
,
HA
,
Ocular damage thresholds and mechanisms for ultrashort pulses of both visible and infrared laser radiation in the rhesus monkey
,
Exp. Eye Res.
24
,
45
56
(
1977
).
33.
D. X.
Hammer
,
A. J.
Welch
,
G. D.
Noojin
,
R. J.
Thomas
,
D. J.
Stolarski
, and
B. A.
Rockwell
,
Spectrally resolved white-light interferomehy for measurement of ocular dispersion
,
J Opt Soc Amer A
16
,
2092
2102
(
1999
).
34.
D. J.
Payne
,
R. A.
Hopkins
,
B. G.
Eilert
,
G. D.
Noojin
,
D. J.
Stolarski
,
R. J.
Thomas
,
G. T.
Hengst
,
P.
Kennedy
, and
B. A.
Rockwell
,
Comparative Study of Laser Damage Threshold Energies in the Artificial Retina
,
J Biomed Optics
,
4
,
337
344
(
1999
).
35.
Roach
WP
,
T. E.
Johnson
, and
B. A.
Rockwell
, “
Proposed Maximum Permissible Exposure Limits for Ultrashort Laser Pulses
,
Health Physics
,
76
:
349
354
(
1999
). and front cover graphic.
36.
Rockwell
BA
,
D. X.
Hammer
,
R. A.
Hopkins
,
D. J.
Payne
,
C. A.
Toth
,
W. P.
Roach
,
J. J.
Druessel
,
P. K.
Kennedy
,
R. E.
Amnotte
,
B.
Eilert
,
S.
Phillips
,
G. D.
Noojin
,
D. J.
Stolarski
and
C. P.
Cain
,
Ultrashort laser pulse bioeffects and safety
,
J. Laser Appl.
11
,
42
44
(
1999
).
37.
Vogel
A
,
K.
Nahen
,
D.
Theisen
,
R.
Birngruber
,
R. J.
Thomas
and
B. A.
Rockwell
,
Influence of optical aberrations on laser-induced plasma formation in water and their consequences for intraocular photodisruption
,
Appl. Opt
.
38
,
3636
43
(
1999
).
38.
Vogel
A
,
J.
Noack
,
K.
Nahen
,
D.
Theisen
,
S.
Busch
,
U.
Parlitz
,
D. X.
Hammer
,
G. D.
Noojin
,
B. A.
Rockwell
and
R.
Birngruber
,
Energy balance of optical breakdown in water at nanosecond to femtosecond times scales
,
Appl. Phys. B
68
,
271
280
(
1999
).
39.
Toth
CA
,
D. G.
Narayan
,
C. P.
Cain
,
G. D.
Noojin
,
K. P.
Winter
,
B. A.
Rockwell
and
W. P.
Roach
, “
Pathology of Macular Lesions from Subnanosecond Pulses of Visible Laser Energy
Invest. Ophthal. And Visual Science
38
:
11
,
2204
2213
,
1997
.
40.
Toth
CA
,
D. G.
Narayan
,
S. A.
Boppart
,
M. R.
Hee
,
J. G.
Fujimoto
,
R.
Birngruber
,
C. P.
Cain
,
C. D.
DiCarlo
, and
W. P.
Roach
.
”A Comparison of Retinal Morphology Viewed by Optical Coherence Tomography and by Light Microscopy
,”
Arch of Ophthalmol.
115
:
1425
1428
,
1997
.
41.
Cain
CP
,
Noojin
GD
,
Stolarski
,
Thomas
RJ
, and
Rockwell
BA
,
Near infrared ultrashort pulse laser bioeffects studies
,
Northrop-Gramman final report, AFRL-HE-BR-TR-2002-0029
,
2003
.
42.
Okuno
,
T.
,
Kojima
M.
,
Hata
I.
, and
Sliney
,
D.H.
,
Temperature rises in the crystalline lens experienced in Maxwellian-view illumination
,
Health Physics
,
88
(
3
):
214
222
,
2005
.
43.
American National Standards Institute/Illuminating Engineering Society of North America (ANSI/IESNA)
(
2005
)
Photobiological Safety of Lamps and Lighting Systems—General Requirements, RP27.1-05
,
New York
,
IESNA
(first edn. in 1993).
44.
American National Standards Institute/Illuminating Engineering Society of North America (ANSI/IESNA)
(
2007
)
Photobiological Safety of Lamps and Lighting Systems—Risk Group Classification and Labeling, RP27.3-07
,
New York
,
IESNA
(first edn. in 1996).
45.
American National Standards Institute/Illuminating Engineering Society of North America (ANSI/IESNA)
(
2000
)
Photobiological Safety of Lamps and Lighting Systems—Measurement Systems-Measurement Techniques, RP27.2-00
,
New York
,
IESNA
.
46.
CIE (Commission International de I’Eclairage, the International Commission on Illumination), CIE Standard S-009E-2002
,
Photobiological Safety of Lamps and Lamp Systems
,
Vienna, CIE
; also adopted as a dual-logo standard by IEC as: IEC 62471/CIES009:2006.
This content is only available via PDF.
You do not currently have access to this content.