Interaction of a high intensity laser with matter may generate an ionizing radiation hazard. Very limited studies have been made, however, on the laser-induced radiation protection issue. This work reviews available literature on the physics and characteristics of laser-induced X-ray hazards. Important aspects include the laser-to-electron energy conversion efficiency, electron angular distribution, electron energy spectrum and effective temperature, and bremsstrahlung production of X-rays in the target. The possible X-ray dose rates for several femtosecond Ti:sapphire laser systems used at SLAC, including the short pulse laser system for the Matter in Extreme Conditions Instrument (peak power 4 TW and peak intensity 2.4×1018 W/cm2) were analysed. A graded approach to mitigate the laser-induced X-ray hazard with a combination of engineered and administrative controls is also proposed.

1.
S. C.
.
Wilks
and
W. L.
.
Kruer
,
IEEE J. Quantum Electron
.
33
(
1997
)
1954
.
2.
H.A.
Baldis
,
E.M.
.
Campbell
,
W.L.
Kruer
.
Handbook of Plasma Physics
, Chapter 9,
Elsevier Science Publishers
, (
1991
).
3.
L. M.
Chen
et al,
Study of hard x-ray emission from intense femtosecond Ti : sapphire laser-solid
,
11
(
2004
)
4439
.
4.
T.
Guo
et al,
Generation of hard x-rays by ultrafast terawatt lasers
,
Rev. Sci. Instr.
,
72
(
2001
)
41
.
5.
H.A.
Baldis
,
E.M.
Campbell
,
W.L.
Kruer
.
Handbook of Plasma Physics, Chapter 9
,
Elsevier Science Publishers
, (
1991
).
6.
L. M.
Chen
et al,
Study of hard x-ray emission from intense femtosecond Ti: sapphire laser-solid
,
11
(
2004
)
4439
.
7.
T.
Guo
et al,
Generation of hard x-rays by ultrafast terawatt lasers
,
Rev. Sci. Instr.
,
72
(
2001
)
41
.
8.
F.
Borne
,
D.
Delacroix
,
J. M.
Gele
, ea al.
Radiation Protection Dosimetry
1
(
2002
)
61
.
9.
Fuchs
,
J.
,
Antici
,
P.
,
D’Humieres
,
E.
,
Lefebvre
,
E.
,
Borghesi
,
M.
,
Brambrink
,
E.
,
Cecchetti
,
C. A.
,
Kaluza
,
M.
,
Malka
,
V.
,
Manclossi
,
M.
,
Meyroneinc
,
S.
,
Mora
,
P.
,
Schreiber
,
J.
,
Toncian
,
T.
,
Pepin
,
H.
&
Audebert
,
R.
Laser-driven proton scaling laws and new paths towards energy increase
.
Nature Phys
.,
2
,
1
, (
Jan
) (
2006
)
48
.
10.
R. J.
Clarke
,
D.
Neely
,
R. D.
Edwards
.
J. Radiol. Prot.
26
(
2006
) p
277
.
11.
Y.
Hayashi
,
A.
Fukumi
et al
Radial Prot Dosimetry
121
(
2
)(
2006
)
99
.
12.
Brunel
.
F.
Not-so-resonant, resonant absorption
.
Phys. Rev. Lett.
59
,
52
55
(
1987
).
13.
Kruer
,
W. L.
and
Estabrook
,
K.
JxB heating by very intense laser light
.
Phys. Fluids.
28
,
430
432
(
1985
).
14.
Esarey
,
E.
Sprangle
,
P.
and
Senior
Member
.
Overview of plasma-based accelerator concepts. IEEE Trans
.
Plasma Sci.
24
,
252
288
(
1996
).
15.
G.
Hays
,
B.
White
,
H. J.
Lee
,
D.
Marsh
,
R. M.
Boyce
,
J.
Galayda
.
Physics Requirements for the MECI Laser Systems
,
LCLS RPD SP-391-001-05 R1
(
2009
).
17.
S. P.
Hatchett
et al,
Phys. Plasmas
7
(
2000
)
2076
.
18.
M. H.
Key
et al,
Phys. Plasmas
5
(
1998
)
1966
.
19.
W.
Theobald
et al,
Phys. Plasmas
13
,
043102
(
2006
).
20.
J.
Myatt
et al,
Phys. Plasmas
14
,
056301
(
2007
).
21.
22.
Yasuike
,
K.
,
Key
,
M. H.
,
Hatchett
,
S. P.
,
Snavely
,
R. A.
, and
Wharton
,
K. B.
Rev. Sci. lnstrum
.
72
, (
2001
)
1236
.
23.
Hesham
Khater
,
Sandra
Brereton
et al.
Shielding analysis for X-ray sources generated in target chamber of the national ignition facility
.
Nuclear Technology
. (
2009
)
381
.
24.
Stephen P.
Hatchett
,
Curtis G.
Brown
,
Thomas E.
Cowan
et al
Electron, photon, and ion beams from the relativistic interaction of Petawatt laser pulses with solid targets
,
Phys. Plasmas
(
2000
)
2076
.
25.
Private communication with Hui Chen and Scott Wilks
(
2010
).
26.
Private communication with Hesham Khater
(
2010
).
27.
M.D.
Perry
,
J.
Sefcik
,
T.
Cowan
,
S.
Hatchett
, et al
Laser driven radiography, UCRL-ID-129314, LLNL
, (
1997
).
28.
K. W. D.
Ledingham
,
I.
Spencer
,
T.
McCanny
et al.
Photonuclear Physics when a Multiterawatt Laser Pulse Interacts with Solid Targets
.
Phys. Rev. Lett
.
84
(
2000
)
899
.
29.
Hui
Chen
et al
Escaping Hot Electron Measurements from Small to Large Short Pulse Laser Facilities
,
LLNL-PRES-416551
(
2009
).
30.
D. D.
Meyerhofer
,
H.
Chen
,
J. A.
Delettrez
,
B.
Soom
,
S.
Uchida
, and
B.
Yaakobi
,
Phys. Fluids B
. (
1993
)
2584
.
31.
Hui
Chen
et al
Physics of plasmas
,
16
,
020705
(
2009
).
32.
33.
Bob
Nagler
,
Estimate of the X-ray spectrum produced by MEC laser systems, internal communication
, (
2009
).
34.
Swanson
,
W. P.
Radiological safety aspects of the operation of electron linear accelerators
.
IAEA Technical Report Series 188 (IAEA, P.O. Box 100, Wagramer Strasse 5, A-1400 Vienna, Austria)
(
1979
).
35.
G.
Battistoni
,
S.
Muraro
,
P.R.
Sala
,
F.
Cerutti
,
A.
Ferrari
,
S.
Roesler
,
A.
Fassò
, The FLUKA code: Description and benchmarking,
Proceedings of the Hadronic Shower Simulation Workshop 2006, Fermilab 6-8 September 2006
,
M.
Albrow
,
R.
Raja
eds.,
AlP Conference Proceedings
896
,
31
(
2007
).
36.
A.
Fassò
,
A.
Ferrari
,
J.
Ranft
and
P. R.
Sala
,
FLUKA a multi-particle transport code. CERN-2005-10
,
INFN/TC_05/11, SLACR773
(
2005
).
37.
Leemans
et al
GeV electron beams from a centimetre-scale accelerator
.
Nature Physics
418
(
2006
)
696
.
38.
Blumenfeld
et al
Energy doubling of 42 GeV electrons in a metre-scale plasma wakefield accelerator
.
Nature
445
(
2007
)
741
.
39.
E.
Esarey
,
C. B.
Schroeder
, and
W. P.
Leemans
.
Physics of laser-driven plasma-based electron accelerators
.
Reviws of Modern Physics
,
81
(
2009
).
40.
Eric Colby and Mark Hogan, private communication
(
2009
).
41.
W. P.
Leemans
,
private communication
(
2010
).
42.
Rick
Donahue
,
private communication
(
2010
).
This content is only available via PDF.
You do not currently have access to this content.