Since the first ANSI Z136.1 standard (1973), there have been virtually no changes made to the minimal-spot size (small-source) Maximum Permissible Exposure (MPE) limits for the human eye that normally apply to intrabeam viewing of a laser for pulse durations ranging from 1 ns to 10 s and for wavelengths from 400 nm to 1200 nm. This is also true for these MPEs for wavelengths greater than 3000 nm. Considering that well over 90 percent of potentially hazardous laser exposures probably result from this range of conditions, this is a remarkable 30-year record. However, the MPEs for extended sources (currently referred to as “large sources”) have been revised on several occasions. This is surprising in several respects, since biological studies of larger retinal image sizes should be less challenging. Prior to 1993, alpha-ruin (αmin) varied from 8 to 11.3 mrad at 1 ns to 24 mrad at 10 s, with a minimal value of 1.6 mrad at 18 μs. In 1993, the extended-source MPEs were changed again and a scaling factor CE (C6 in IEC) was introduced for angular subtense values ranging up to 100 mrad (αmax) and with constant values for αmin = 1.5-mrad for t < 0.7 s. However, by 2001, the treatment of extended-source MPEs were changed still again to provide a constant value of αmin = 1.5 mrad for all exposure durations. Now, it appears that biological research supports another change to the MPEs for extended sources. There appears now to be no retinal spot-size dependence of injury thresholds for pulse durations between 1 ns and 18 μs (the thermal confinement time). If home out by further study, there would be no need to change αmin and extended-source MPEs could be expressed (as in 1973) as a constant pulsed integrated radiance for these short pulse durations. However, the value of αmax must increase from 1.5 mrad for durations greater than 18 μs to at least 24 mrad, but not as large as 100 mrad at 10 s. The exact function for αmax depends on radial heat flow in the retina. It is interesting that in some limited respects, the 1973 MPEs for extended sources had greater accuracy that those presently published!

1.
American National Standards Institute
.
Safe use of lasers
, Standard Z-136.1 1973,
New York, NY
,
American Standards Institute
,
1973
2.
American National Standards Institute
.
Safe use of lasers
, Standard Z-136.1 2000,
Orlando, FL
,
American Standards Institute, Laser Institute of America
,
2000
.
3.
Bargeron
C. B.
,
Deters
D. J.
,
Farrell
R. A.
,
McCally
R.L.
, “
Epithelial damage in rabbit corneas exposed to CO2 laser radiation
”,
Health Phys
,
56
, pp.
85
95
,
1989
.
4.
Beatrice
,
E.S.
,
Frisch
,
G.D.
,
Retinal laser damage thresholds as a function of image diameter
,
Arch Environ Health
,
27
:
322
326
(
1973
).
5.
Bergqvist
,
T.
,
Kleman
,
B.
,
Tengroth
,
B.
,
Laser irradiance levels for retinal lesion
,
Acta Ophth
,
43
:
331
349
(
1965
).
6.
Bergqvist
,
T.
,
Kleman
,
B.
,
Tengroth
,
B.
,
Retinal lesions produced by q-switched lasers
,
Acta Ophth
,
44
:
853
863
(
1966
).
7.
Bimgruber
,
R.
,
Gabel
,
V.P.
,
Hillenkamp
,
F.
,
Experimental studies of laser-thermal retinal injury
,
Health Physics
,
44
(
5
):
519
531
(
1983
).
8.
Birngruber
,
R.
,
Hillenkamp
,
F.
,
Gabel
,
V.P.
,
Experimentelle und theoretische untersuchungen zur thermischen schadigung des augenhintergrundes durch laserstrahlung
,
GSF-Bericht
,
Munich
, (
1978
).
9.
Blabla
,
J.
,
John
,
J.
,
The saturation effect in retina measured by means of He-Ne laser
,
Am J Ophthalmol
,
62
:
659
663
(
1966
).
10.
British Ministry of Aviation
,
Laser Systems - Code of Practice
,
British Ministry of Aviation of the United Kingdom
,
Shell Mex House, London, England
, (
1965
).
11.
British Ministry of Technology (UK)
,
Laser Systems Code of Practice, Ministry of Technology
,
Safety Services Organisation
,
St Marys Cray, Orpington, Kent
(
1969
).
12.
British Standards Institution (BSI)
,
British Standard: Laser systems code of practice
, Standard BS4803,
London
, (
1972
).
13.
Clarke
,
A.M.
,
Ham
,
W.T.
, Jr.
,
Geeraets
,
W.J.
,
Williams
,
R.C.
,
Mueller
,
H.A.
,
Laser effects on the eye
,
Arch Environ Health
, (
1969
).
14.
Courant
,
D.
,
Court
,
L.
,
Sliney
,
D.H.
,
Research relative to safety formulations for retinal damage from extended source and large retinal image
, “
Proceedings of the International Laser Safety Conference
,”
Laser Institute of America, Orlando, FL
,
4
25
(
1991
).
15.
Farrer
,
D.N.
,
Graham
,
E.S.
,
Ham
,
W.T.
, Jr.
,
Geeraets
,
W.J.
,
Williams
,
R.C.
,
Mueller
,
H.A.
,
Cleary
,
S.F.
,
The effect of threshold macular lesions and subthreshold macular exposures on visual acuity in the rhesus monkey
,
Am Ind Hyg Assn J
,
31
(
2
):
198
205
(
1970
).
16.
Gabel
,
V.P.
,
Bimgmber
,
R.
,
Hillenkamp
,
F.
,
Wallow
,
I.H.L.
,
Schmolke
,
W.
,
Uber die lichtabsorption am augenhintergrund
,
Ber Dtsch Ophthalmol Ges
,
73
:
362
367
(
1973
).
17.
Ham
,
W.T.
,
Geeraets
,
W.J
,
Mueller
,
H.A.
,
Williams
,
R.C.
,
Clarke
,
A.M.
,
Cleary
,
S.F.
,
Retinal burn thresholds for the helium-neon laser in the rhesus monkey
,
Arch Ophthalmol
,
84
:
797
809
(
1972
?).
18.
Ham
,
W.T.
,
Mueller
,
H.A.
, The photopathology and nature of the blue light and near-uv retinal lesions produced by laser and other optical sources,
Laser Applications in Medicine and Biology
, (edited by
M.L.
Wolbarsht
)
Plen Publ Corp
,
New York, NY
,
191
246
(
1989
).
19.
Ham
,
W. T.
, Jr.
,
Mueller
,
H. A.
,
Sliney
,
D. H.
,
Retinal sensitivity to damage from short wavelength light
,
Nature
,
260
:
153
155
(
1976
).
20.
Hayes
,
J.R.
,
Wolbarsht
,
M.L.
,
Thermal model for retinal damage induced by pulsed lasers
,
J Aerospace Med
,
39
:
474
480
(
1968
).
21.
Lin
,
C. P.
,
M. W.
Kelly
,
Sybayan
A.B.S.
,
Latina
M.A.
,
Anderson
R.R.
, “
Selective Cell Killing by Microparticle Absorption of Pulsed Laser Radiation
”,
IEEE Journal of Selected Topics in Quantum Electronics
,
5
, pp.
963
967
,
1999
22.
Lund
,
O.E.
,
Wallow
,
I.H.L.
,
Hillenkamp
,
F.
,
Birngruber
,
R.
,
Gabel
,
V.P.
,
Zur experimentellen laser-einwirkung am auge (Experimental laser effects on the eye)
,
Ber Dtsch Ophthalmol Ges
,
73
:
360
362
(
1975
).
23.
Marshall
,
J.
,
Mellerio
,
J.
,
Histology of retinal lesions produced with q-switched lasers
,
Exp Eye Res
,
7
:
225
230
(
1968
).
24.
Roach
,
W. P.
,
Johnson
,
T. E.
,
Rockwell
,
B. A.
, “
Proposed maximum permissible exposure limits for ultrashort laser pulses
”,
Health Physics
,
76
, pp.
349
354
,
1999
.
25.
Sliney
,
D. H.
, The development of laser safety criteria-biological considerations,
Laser Applications In Medicine and Biology
(edited by
M. L.
Wolbarsht
),
Plenum Press
,
NY
, pp.
163
238
, (
1971
).
26.
Sliney
,
D. H.
,
Freasier
,
B. C.
,
The evaluation of optical radiation hazards
,
Appl Opt
,
12
:
1
22
(
1973
).
27.
Sliney
D.H.
,
Mellerio
J.
,
Gabel
V.P.
and
Schulmeister
K.
,
What is the Meaning of Thresholds in Laser Injury Experiments? Implications for Human Exposure Limits
,
Health Physics
,
82
:
335
347
,
2002
.
28.
Tengroth
,
B.
,
Effects on the retina ofthe ruby laser
,
Acta Ophth
,
42
:
931
932
(
1964
).
29.
Wolbarsht
,
M. L.
,
Sliney
,
D. H.
, The formulation of protection standards for lasers,
Lasers in Medicine and Biology
, (edited by
Wolbarsht
,
M. L.
)
Plenum Press
,
New York
,
11
:
309
360
(
1974
).
30.
Zuclich
J.A.
,
Lund
D. J.
,
Edsall
P. R.
,
Hollins
R. C.
,
Smith
P. A.
,
Stuck
B. E.
,
Till
S.
,
McLin
L. N.
,
Kennedy
P. K.
and
S.
Till
, “
Variation of laser induced retinal-damage threshold with retinal image size
”,
Journal of Laser Applications
,
12
(
2
), pp.
74
80
,
2000
.
31.
Zweng
,
H. C.
,
Flocks
,
M.
,
Kapany
,
N. S.
,
Silbertrust
,
N.
,
Peppers
,
N. A.
,
Experimental laser photocoagulation
,
Am J Ophth
,
58
(
3
):
353
362
(
1964
).
This content is only available via PDF.
You do not currently have access to this content.