Laser beam welding is a complex manufacturing procedure which is influenced by a multitude of parameters. Interrelationships withdraw from a deep understanding of the physical processes, since cause-and-effect relations of parameters are not clearly determined yet. Owing to a permanent rise in demands on quality and reliability of product and process, the process capability has to be assured to achieve the goal of error-free manufacturing.

The processing quality is determined by parameters which have to be controlled by algorithmic methods. The number of these parameters is too large to build up control cycles. Hence, there is a need to perform a fault analysis to obtain a reduced set which can be handled. This parameter set is required to cover the major part of influence on the processing results.

Dependencies, influences and correlations between input and output parameters are ascertained by interviews with experts as well as by experimental results. By these measures cause-and-effect relations can be determined. The results lead to a state model which simulates both, machining structures and process cycles. Several methods of fault observation are tested for their suitability to monitor laser beam welding. A combination of well suited methods is utilized to generate the state model. The reliability of the model will be discussed with regard to successful failure detection and avoidance.

1.
Dahmen
,
M.
;
Fürst
,
R
;
Kaierle
,
S.
;
Kreutz
,
E. W.
;
Poprawe
,
R.
;
Schulz
,
W.
;
Turichin
,
G.
: Laser Beam Welding with CALAS - Software-supported Process Planning and Control.
Proceedings of 6th International Welding Symposium of the Japan Welding Society
, Ed.:
M.
Ushio
,
Nagoya, Japan
(
1996
), pp.
173
178
2.
DIN ISO 9000
,
Qualitätssicherung ‘ Qualtäitsmanagement
.
Beuth Verlag
,
Berlin
(
1992
)
3.
Pfeifer
,
T.
: Qualitätsmanagement:
Strategien, Methoden, Techniken
.
Hanser-Verlag, München, Wien
(
1993
)
4.
Becker
,
D.
: Wechselwirkung von Wärmeleitung,
Hydrodynamik und Verdampfung beim Tiefschweißen mit Laserstrahlung. Dissertation
,
Verlag Shaker, Aachen
(
1995
)
5.
Turichin
,
G. A.
:
Physical bases of the joint formation process
in
EBW with deep penetration
. PhD-Thesis,
Leningrad
,
Russia
(
1990
)
6.
Schulz
,
W.
;
Fürst
,
B.
;
Kaierle
,
S.
;
Turichin
,
G.
;
Kreutz
,
E. W.
;
Poprawe
,
R.
: Powerful Features for LBW Including Theoretical Aspects.
Proceedings of ICALEO
1996
, LIA Volume
81
Laser Materials Processig, Eds.:
W.
Duley
,
K.
Shibata
,
R.
Poprawe
,
Detroit, Michigan
,
USA
, Section D, p.
1
9
7.
SFB 368: Autonome Produktionszellen - Arbeits- und Ergebnisbericht
1994-1996
,
RheinischWestfälische Technische Hochschule
,
Aachen
,
Germany
(1996)
8.
Kittel
,
M.
Dahmen
,
R Fürst
,
S.
Kaierle
,
E. W.
Kreutz
,
R.
Poprawe
: Introduction of a CAM Feature Model for Laser Beam Welding.
Rapid Prototyping and flexible Manufacturing
, Eds.:
R. J.
Ahlers
,
G.
Reinhart
,
Proceedings of SPIE
Vol.
3102
, pp.
36
42
,
Bellingham (USA)
1997
9.
Schlick
,
C.
;
Dahmen
,
M.
;
Kaierle
,
S.
;
Luczak
,
H.
;
Kreutz
,
E. W.
;
Poprawe
,
R.
: Virtual Reality Display for Autonomous 3D-Laser Welding Cells.
Proceedings of ALLFN’97 Conference
,
Galway, Irland
(
1997
)
10.
Hering
,
E.
(Ed.), et al.:
Qualitätssicherung für Ingenieure
.
VDI-Verlag, Düsseldorf
,
Germany
(
1993
)
11.
Warnecke
,
H.-J.
, et al.: Handbuch Qualitätstechnik:
Methoden und Geräte zur effizienten Qualitätssicherung
.
Verlag Moderne Industrie, Landsberg/Lech
,
Germany
(
1992
)
This content is only available via PDF.
You do not currently have access to this content.