The development and performance of a temperature optical fibre sensor is presented in the article. It is based on fluorescence lifetime measurement, exploiting a simple digital signal processing scheme for on-line fluorescence lifetime determination. Experimental implementation of the sensor was preceded by a numerical ray tracing Monte Carlo optimisation of probe collection efficiency. It was shown that one-fibre probes are a preferred alternative from a collection efficiency perspective. Two- and multiple fibre probes can be optimised by proper construction to achieve several times higher efficiency than previously reported probes. Model and modified digital lock-in signal processing scheme were experimentally confirmed by a set of measurements, using alexandrite crystal as a sensing element, with HeNe laser source for excitation. Accuracy of ±0.3 K was achieved in the 20÷90 °C temperature range with almost basic equipment.

1.
T.
Pustelny
(
1995
).
Luminescence temperature sensor for high-voltage arrangements
.
Sensors and Actuators A.
49
:
57
60
2.
Zhang
Z.
,
K.T. V.
Grattan
,
A.W.
Palmer
(Aug.
1992
).
Fiber-optic high-temperature sensor based on the fluorescence lifetime of alexandrite
.
Rev. Sci. Instrum
.
63
(
8
):
3869
3873
3.
Koechner
W.
(
1976
). Solid-State Laser Engineering.
Springer-Verlag
,
New York
.
45
52
4.
Sholes
,
R.R.
,
J.G.
Small
(July
1980
).
Fluorescent decay thermometer with biological applications
.
Rev. Sci. Instrum
.
51
:
882
884
5.
Grattan
K.T.V.
,
R.K.
Selli
,
A.W.
Palmer
(August
1988
).
Ruby decay-time fluorescence thermometer in a fiber-optic configuration
.
Rev. Sci. Instrum
.
59
(
8
):
1328
1335
6.
Anghel
F.
,
C.
Iliescu
,
K.T.V.
Grattan
,
A.W.
Palmer
,
Z.Y.
Zhang
(March
1995
).
Fluorescent-based lifetime measurement thermometer for use at subroom temperatures(200-300K)
.
Rev. Sci. Instrum
.
66
(
3
):
2611
2614
7.
Zhang
Z.
,
K.T.V.
Grattan
,
A.W.
Palmer
(July
1991
).
A novel signal processing scheme for a fluorescence based fiber-optic temperature sensor
.
Rev. Sci. Instrum
.
62
(
7
):
1735
1742
8.
Grattan
K.T.V.
,
A.W.
Palmer
(September
1985
).
Infrared fluorescence decay-time temperature sensor
.
Rev. Sci. Instrum
..
56
(
9
):
1784
1787
9.
V.
Fernicola
,
L.
Crovini
(July
1995
).
Digital Optical Fiber Point Sensor for High-Temperature Measurement
.
IEEE J. Lightwave. Tech
.
13
(
7
):
1331
1334
10.
Zhang
Z.
,
K.T.V.
Grattan
,
A.W.
Palmer
(April
1993
).
Thermal characteristics of alexandrite fluorescence decay at high temperatures, induced by a visible laser diode emission
.
J. Appl. Phys
.
73
(
7
):
3493
3498
11.
Zhang
Z.
,
K.T.V.
Grattan
,
A.W.
Palmer
(May
1992
).
Fiber optic temperature sensor based on the cross referencing between blackbody radiation and fluorescence lifetime
.
Rev. Sci. Instrum
.
63
(
5
):
3177
3181
12.
Zhang
Z.
,
K.T.V.
Grattan
,
A.W.
Palmer
(September
1993
).
Phase-locked detection of fluorescence lifetime
.
Rev. Sci. Instrum
.
64
(
9
):
2531
2540
13.
Born
M.
,
E.
Wolf
(
1983
). Principles of Optics.
Pergamon Press
,
Oxford
.
124
125
14.
Press
W.H.
,
S.A.
Teukolsky
,
W.T.
Vetterling
,
B.P.
Flannery
(
1994
).
Numerical recipes in C
,
Cambridge University Press
,
Cambridge
.
304
309
15.
Babnik
A.
,
A.
Kobe
,
D.
Kuzman
,
I.
Bajsič
,
J.
Možina
(
1996
).
Improved probe geometry for fluorescence lifetime based temperature fiberoptic sensor
.
Sensors and Actuators A
. (accepted for publication).
This content is only available via PDF.
You do not currently have access to this content.