The performance of laser beam welding strongly depends on the education of the machine operator. The development of processing parameters for each machine installation and trouble-shooting are time and cost intensive. CALas, a fast simulation software of the laser beam welding process is presented.

The physical basis and its appearance in the numerical algorithm is discussed. The model considers the fundamental physical processes, absorption of laser radiation at the keyhole surface including multiple reflections, heat conduction in liquid and solid phases, melt flow and gas flow, absorption of laser radiation in the vapor phase and heat conduction in the plasma volume. Integral formulations are used in order to decrease the calculation time and to preserve the most important features of the experimental results. The results are compared with off-line measurements of the welding depth, the seam width and the cooling time.

The welding process is far from its stationary state and experimentally observed quantities are intrinsically time dependent. Therefore, already the setup of a stationary model requires some knowledge about the dynamics.

The fundamental physical processes are ordered by their typical time-scales. On-line measurement of plasma emission and numerical simulation of an evolving capillary are presented.

1.
D.
Petring
, et al.,
The absorption as a variable property during laser beam cutting
,
Proc. ICALEO ’88
, pp.
293
302
,
Santa Clara
1988
2.
T.P
Duffey
,
P.S.
Mohanty
,
K.
Nagarathnam
,
M.
Ii
,
J.
Mazumder
,
Science Base for Processing with High Brightness Diode-Pumped Nd:YAG Lasers
,
Proc. ICALEO’95
, pp.
825
834
,
San Diego
1995
3.
D.
Petring
,
Anwendungsorientierte Modellierung des Laserstrahlschneidens zur rechnergestützten Prozeßoptimierung
, Thesis RWTH Aachen
1994
,
Verlag Shaker
Aachen
, ISBN 3-8265-0433-X
4.
M.
Beck
,
P.
Berger
and
H.
Hügel
,
The effect of plasma formation on beam focussing in deep penetration welding with CO2 lasers.
,
J. Phys. D:Appl. Phys
.
28
(
1995
)
2430
2442
5.
J.
Dowden
and
P.
Kapadia
,
A mathematical investigation of the penetration depth in keyhole welding with continuous CO2 lasers
,
J. Phys. D:Appl. Phys
.
28
(
1995
)
2252
2261
6.
K.N.
Lankalapalli
,
J.F.
Tu
and
M.
Gartner
,
A model for estimating penetration depth of laser welding processes
,
J. Phys. D:Appl. Phys
.
29
(
1996
)
1831
1841
7.
A.
Kaplan
,
A model of deep pentration laser welding based on calculation of the keyhole profile
,
J. Phys. D:Appl. Phys
.
27
(
1994
)
1805
1814
8.
M.
Niessen
,
H.G.
Treusch
,
Development of beam capillary in welding
,
Proc. on the 11th meeting on mathematical modelling of material processing with lasers (M4PL 11)
,
Marseille
1995
, (
A.
Kaplan
,
D.
Schuöcker
eds.),
Vienna
1995
9.
D.
Becker
,
W.
Schulz
,
Evaporation in deep penetration welding with laser radiation
,
Proc. 11th Conf Laser ‘93
, pp.
529
539
,
1993
10.
T.
Klein
,
M.
Vicanek
and
G.
Simon
,
Forced oscillations of the keyhole in penetration laser beam welding
,
J. Phys. D:Appl. Phys
.
29
(
1996
)
322
332
11.
V.V.
Semak
,
J.A.
Hopkins
,
M.H.
McCay
and
T.D.
McCay
,
Melt pool dynamics during laser welding
,
J. Phys. D:Appl. Phys
.
28
(
1995
)
2443
2450
12.
L.
Li
,
D.J.
Brookfield
and
W.M.
Steen
,
Plasma charge sensor for in-process, non-contact monitoring of the laser welding process
,
Meas. Sci. Technol
.
7
(
1996
)
615
626
13.
H.
Gu
and
W.W.
Duley
,
A statistical approach to acoustic monitoring of laser welding
,
J. Phys. D:Appl. Phys
.
29
(
1996
)
556
560
14.
W.
Schulz
,
E.W.
Kreutz
,
W.W.
Duley
,
Monitoring of penetration depth and quality control in laser beam welding
,
German-Canadian Laser Workshop, Laser’95, erschienen
in:
Laser Research&Laser technology
, pp.
133
145
, (
M.
Rahe
ed.),
VDI-Verlag
,
Düsseldorf
1995
15.
M.
Watanabe
,
H.
Okado
,
T.
Inoue
,
S.
Nakamura
and
A.
Matsunawa
,
Features of various in-process monitoring methods and their applications to laser welding
,
Proc. ICALEO’95
, pp.
553
562
,
San Diego
1995
16.
T.
Maiwa
,
I.
Miyamoto
and
K.
Mori
,
Properties of Keyhole Plasma in CO2 Laser Welding
Proc. ICALEO’95
, pp.
708
717
,
San Diego
1995
17.
J.
Griebsch
,
H.
Hügel
,
F.
Dausinger
,
M.
Jurca
,
Quality asurance in pulsed laser welding.
Proc. ICALEO’95
, pp.
708
717
,
San Diego
1995
18.
W.
Schulz
,
V.
Kostrykin
,
H.
Zefferer
,
D.
Petring
and
R.
Poprawe
,
A free boundary problem related to laser beam fusion cutting: ODE Approximation
, accepted for publication in
Int. J. Heat and Mass Transfer
,August
1996
19.
D.
Becker
,
Wechselwirkung von Wärmeleitung, Hydrodynamik und Verdampfung beim Tiefschweißen mit Laserstrahlung
, Thesis RWTH Aachen
1994
,
Verlag Shaker
,
Aachen
, ISBN 3-8265-0407-0
20.
G.K.
Batchelor
,
An Introduction to Fluid Dynamics
, pp.
367
ff,
Cambridge University Press
1967
This content is only available via PDF.
You do not currently have access to this content.