Real-time holographic interferometry is used to examine the thermal interaction between a propagating beam of CO2 laser radiation and an absorbing gas. For the first time, the effect of convection has been eliminated in such a system through the use of reduced gravity conditions as obtained aboard the NASA KC-135 microgravity aircraft. Under these conditions absorption of laser radiation yields interference fringes with a quasi-Gaussian profile reflecting the irradiance profile within the laser beam. A theoretical model of this convectionless interaction is proposed using the linearized hydrodynamic equations. A good fit to the finite fringe data was obtained under a variety of experimental conditions, although we find that thermal conduction may become important at high irradiance.

1.
W.W.
Duley
, “Laser Processing and Materials”,
Plenum
(
1983
)
2.
W.M.
Steen
, “Laser Materials Processing”,
Springer
(
1991
)
3.
D. C.
Smith
, “
Thermal Defocusing of CO2 Laser Radiation in Gases
”,
IEEE Journal of Quantum Electronics
,
vol. QE-5
, no.
12
,
600
607
(
1969
)
4.
V.A.
Petrishchev
,
L.V.
Piskunova
,
V.I.
Talanov
, and
R.E.
Erm
, “
Numerical Modelling of Thermal Self-Action in the Presence of Induced Convection
”,
Izv. Vyssh. Uchebn. Zaved., Fiz
.,
24
,
161
171
(
1981
)
5.
M.
Olfert
and
W.W.
Duley
, “
Holographic Interferometry of Isotherms During Laser Drilling of Fused Quartz
”,
J. Phys. D: Appl. Phys
.,
29
,
1140
1145
(
1996
)
6.
M.
Olfert
and
W. W.
Duley
, “
Holographic Imaging of Laser Processing in Transparent Media: Visualizing the Temperature Field in Real Time
”,
Proc. SPIE
,
2703
,
114
125
(
1996
)
7.
C. M.
Vest
, “
Holographic Interferometry
”,
John Wiley & Sons, Inc.
(
1979
)
8.
P.B.
Ulrich
and
J.
Wallace
, “
Propagation Characteristics of Collimated, Pulsed Laser Beams Through an Absorbing Atmosphere
”,
J. Opt. Soc. Amer
.
63
,
8
12
(
1972
)
9.
S. M.
Richardson
, “
Fluid Mechanics
”,
Hemisphere Publishing Corp.
, (
1989
)
10.
W.W.
Duley
, “
CO2 Lasers
”,
Academic Press
(
1976
)
11.
J.
Hilsenrath
, “
Tables of Thermodynamic and Transport Properties of Air, Argon, Carbon Dioxide, Carbon Monoxide, Hydrogen, Nitrogen, Oxygen, and Steam
”,
Pergamon Press
, (
1960
)
12.
The Laser Based R&D Test-Bed System (LTS)
,
MPB Technologies Inc.
(December
1990
)
13.
R.A.
Serway
, “Physics for Scientists and Engineers”,
Saunders College Publishing
, (
1986
)
14.
P.V.
Avizonis
,
C.B.
Hogge
,
R.R.
Butts
, and
J.R.
Kenemuth
, “
Geometric Optics of Thermal Blooming in Gases
”,
Applied Optics
,
11
,
554
564
(
1972
)
15.
J.R.
Kenemuth
,
C.B.
Hogge
, and
P.B.
Avizonis
, “
Thermal Blooming of a 10.6 μm Laser Beam in CO2
,
Appl. Phys. Letters
17
,
220
223
(
1970
)
16.
H.
Inaba
and
H.
Ito
, “
Observation of Power-Dependent Distortion of an Infrared Beam at 10.6 μm from a CO2 Laser During Propagation in Liquids
”,
IEEE J. Quantum Electronics
,
QE-4
,
45
48
(
1968
)
17.
A.N.
Kucherov
and
E.V.
Ustinov
, “
Steady-State Thermal Blooming Effect in Subsonic and Supersonic Gas-Dynamic Regimes
”,
Izv. Vyssh. Uchebn. Zaved., Fiz
,
33
,
299
307
(
1988
)
18.
C.H.
Chan
, “
Effective Absorption for Thermal Blooming due to Aerosols
”,
Appl. Phys. Lett
.,
26
,
628
630
(
1975
)
19.
J. N.
Hayes
, “
Thermal Blooming of Rapidly Slued Laser Beams
”,
Applied Optics
,
13
,
2072
2075
(
1974
)
20.
R.W.
O’Neil
,
H.
Kleiman
, and
J.E.
Lowder
, “
Observation of Hydrodynamic Effects on Thermal Blooming
”,
Appl. Phys. Lett
.,
24
,
118
120
(
1974
)
21.
J. N.
Hayes
, “
Thermal Blooming of Laser Beams in Fluids
”,
Applied Optics
,
11
,
455
462
(
1972
)
22.
D. C.
Smith
, “
High-Power Laser Propagation: Thermal Blooming
”,
Proceedings of the IEEE
,
65
,
1679
1714
(
1977
)
23.
P.
Hillion
and
S.
Quinnez
, “
Thermal Blooming Calculations with Analytical Diffraction Approximated Expressions
”,
J. Math. Phys
.,
22
,
897
907
(
1981
)
24.
R. A.
Chodzko
and
S.-Chi
Lin
, “
A Study of Strong Thermal Interactions between a Laser Beam and an Absorbing Gas
”,
AIAA Journal
,
9
,
1105
1112
(
1971
)
25.
V.A.
Levin
,
A.A.
Sorokin
, and
A.M.
Starik
, “
On the Change in the Refractive Index Accompanying the Propagation of Radiation Through Resonantly Absorbing Gas Media in the Kinetic Cooling Regime
”,
Sov. Phys. Tech. Phys
.,
33
,
339
344
(
1988
)
26.
W. E.
Maher
, “
Laser Beam Propagation Model with a Hydrodynamic Treatment of the Transmission Medium
”,
Applied Optics
,
11
,
249
256
(
1972
)
27.
C. C.
Davis
, “
Radial Laser-Induced Sound Wave Propagation and Vibrational Relaxation in Carbon Dioxide
”,
IEEE J. Quantum Physics
,
QE-18
,
999
1003
(
1982
)
28.
G.R.
Toker
, “
Holographic Interferometry Study of Cylindrical Shock Waves Initiated by a Carbon Dioxide Laser in Helium
”,
Sov. Phys. Tech. Phys
.,
33
,
554
557
(
1988
)
This content is only available via PDF.
You do not currently have access to this content.