Laser solid forming (LSF) is a newly advanced additive manufacturing technique which offers a big potential in efficiency and cost-savings for fabricating aerospace titanium alloys components with high performance. In this research, the macro-/micro-structure and electrochemical dissolution features of Ti-6Al-4V alloy produced by LSF and forging were investigated. The LSFed Ti-6Al-4V that included as-deposited and annealing heat treatment (HT) conditions contains three periodically distributed microstructural morphology, including fine microstructure zone (FMZ), coarse microstructure zone (CMZ), and layer band. All zones of the microstructural morphology in entire deposit is constituent of α-laths and small amount of remained β phase. An alternating structure of coarse and fine microstructures were observed along the deposition direction in the deposit. Layer bands generally spaced above the CMZ. The CMZ is constituent of slightly coarser basket weave structure than the FMZ. However, the layer bands present the microstructure of colony α. Additionally, the α-laths are slightly coarsened by HT, and simultaneously results in a more homogeneous microstructure comparing with the as-deposited microstructure. Moreover, the forged Ti-6Al-4V possesses the most homogeneous microstructure and largest size of α phase. Simultaneously, a variety of dissolved morphology features were observed in the three types of samples after potentiodynamic polarization tests. The order of surface macro-smooth level of these samples is forged>HT>as-deposited. For LSFed Ti-6Al-4V, the FMZs and layer bands present a faster electrochemical dissolution rate than that the CMZs. Consequently, the uneven surface is revealed by the distinct dissolution rate of different microstructural zones at the same LSFed sample. The forged Ti-6Al-4V alloys present uniformly dissolved behavior attributed to their homogeneity of microstructure. The elimination of layer bands and homogenization of the microstructure of the LSFed Ti-6Al-4V are of great significance for improving the surface quality during electrochemical machining (ECM).

1.
C.
Leyens
, &
M.
Peters
. (
2003
).
Titanium and Titanium Alloys: Fundamentals and Applications
:
Springer-Verlag.
2.
Y. M.
Ren
,
X.
Lin
,
X.
Fu
,
H.
Tan
,
J.
Chen
, &
W. D.
Huang
. (
2017
).
Microstructure and deformation behavior of Ti-6Al-4V alloy by high-power laser solid forming
.
Acta Materialia
132
,
82
95
.
3.
W.
Huang
, &
X.
Lin
. (
2014
).
Research Progress in Laser Solid Forming of High-Performance Metallic Components at the State Key Laboratory of Solidification Processing of China
.
3D Printing and Additive Manufacturing
1
,
156
165
.
4.
B. E.
Carroll
,
T. A.
Palmer
, &
A. M.
Beese
. (
2015
).
Anisotropic tensile behavior of Ti–6Al–4V components fabricated with directed energy deposition additive manufacturing
.
Acta Materialia
87
,
309
320
.
5.
Z.
Zhao
,
J.
Chen
,
H.
Tan
,
G.
Zhang
,
X.
Lin
, &
W.
Huang
. (
2018
).
Achieving superior ductility for laser solid formed extra low interstitial Ti-6Al-4V titanium alloy through equiaxial alpha microstructure
.
Scripta Materialia
146
,
187
191
.
6.
Z.
Xu
,
X.
Chen
,
Z.
Zhou
,
P.
Qin
, &
D.
Zhu
. (
2016
).
Electrochemical Machining of High- temperature Titanium Alloy Ti60
.
Procedia CIRP 42
,
125
130
.
7.
H. S.
Li
,
C. P.
Gao
,
G. Q.
Wang
,
N. S.
Qu
, &
D.
Zhu
. (
2016
).
A Study of Electrochemical Machining of Ti-6Al-4V in NaNO3 solution
.
Scientific Reports
6
.
8.
F.
Klocke
,
M.
Zeis
,
A.
Klink
, &
D.
Veselovac
. (
2013
).
Experimental Research on the Electrochemical Machining of Modern Titanium- and Nickel-based Alloys for Aero Engine Components ⋆
.
Procedia CIRP 6
,
368
372
.
9.
J.
Li
,
X.
Lin
,
M.
Zheng
,
J.
Wang
,
P.
Guo
,
T.
Qin
,
M.
Zhu
,
W.
Huang
, &
H.
Yang
. (
2018
).
Distinction in anodic dissolution behavior on different planes of laser solid formed Ti-6Al-4V alloy
.
Electrochimica Acta
283
,
1482
1489
.
10.
J.
Li
,
X.
Lin
,
P.
Guo
,
M.
Song
, &
W.
Huang
. (
2018
).
Electrochemical behaviour of laser solid formed Ti–6Al–4V alloy in a highly concentrated NaCl solution
.
Corrosion Science
.
11.
S. M.
Kelly
, &
S. L.
Kampe
. (
2004
).
Microstructural evolution in laser-deposited multilayer Ti-M-4V builds: Part I. Microstructural characterization
.
Metallurgical and Materials Transactions A-Physical Metallurgy and Materials Science
35A
,
1861
1867
.
12.
J.
Lin
,
Y.
Lv
,
Y.
Liu
,
Z.
Sun
,
K.
Wang
,
Z.
Li
,
Y.
Wu
, &
B.
Xu
. (
2017
).
Microstructural evolution and mechanical property of Ti-6Al-4V wall deposited by continuous plasma arc additive manufacturing without post heat treatment
.
J Mech Behav Biomed Mater
69
,
19
29
.
13.
Y.
Kok
,
X. P.
Tan
,
P.
Wang
,
M. L. S.
Nai
,
N. H.
Loh
,
E.
Liu
, &
S. B.
Tor
. (
2017
).
Anisotropy and heterogeneity of microstructure and mechanical properties in metal additive manufacturing: A critical review
.
Materials & Design.
14.
S. M.
Kelly
, &
S. L.
Kampe
. (
2004
).
Microstructural evolution in laser-deposited multilayer Ti-6Al-4V builds: Part II. Thermal modeling
.
Metallurgical & Materials Transactions A
35
,
1869
1879
.
15.
Q.
Zhang
,
J.
Chen
,
P.
Guo
,
H.
Tan
,
X.
Lin
, &
W.
Huang
. (
2015
).
Texture and microstructure characterization in laser additive manufactured Ti– 6Al–2Zr–2Sn–3Mo–1.5Cr–2Nb titanium alloy
.
Materials & Design
88
,
550
557
.
16.
M.
Seifi
,
A. A.
Salem
,
D. P.
Satko
,
U.
Ackelid
,
S. L.
Semiatin
, &
J. J.
Lewandowski
. (
2017
).
Effects of HIP on microstructural heterogeneity, defect distribution and mechanical properties of additively manufactured EBM Ti-48Al-2Cr-2Nb
.
Journal of Alloys and Compounds
729
,
1118
1135
.
17.
S.
Suwas
, &
R. K.
Ray
. (
2014
).
Crystallographic Texture of Materials
:
Springer
London
.
18.
P. A.
Kobryn
,
E. H.
Moore
, &
S. L.
Semiatin
. (
2000
).
Effect of laser power and traverse speed on microstructure, porosity, and build height in laser-deposited Ti-6Al-4V
.
Scripta Materialia
43
,
299
305
.
19.
J.
Yang
,
H.
Yang
,
H.
Yu
,
Z.
Wang
, &
X.
Zeng
. (
2017
).
Corrosion Behavior of Additive Manufactured Ti-6Al-4V Alloy in NaCl Solution
.
Metallurgical and Materials Transactions A-Physical Metallurgy and Materials Science
48A
,
3583
3593
.
20.
L.
Niu
, &
K.
Nakada
. (
2015
).
Effect of chloride and sulfate ions in simulated boiler water on pitting corrosion behavior of 13Cr steel
.
Corrosion Science 96
,
171
177
.
21.
D. D.
Macdonald
. (
2011
).
The history of the point defect model for the passive state: a brief review of film growth aspects
.
Electrochimica Acta 56
,
1761
1772
.
22.
J.
Chen
, &
W.
Tsai
. (
2011
).
In situ corrosion monitoring of Ti–6Al–4V alloy in H2SO4/HCl mixed solution using electrochemical AFM
.
Electrochimica Acta 56
,
1746
1751
.
23.
L.
Wang
,
Y.
Lin
,
Z.
Zeng
,
W.
Liu
,
Q.
Xue
,
L.
Hu
, &
J.
Zhang
. (
2007
).
Electrochemical corrosion behavior of nanocrystalline Co coatings explained by higher grain boundary density
.
Electrochimica Acta
52
,
4342
4350
.
24.
K. D.
Ralston
, &
N.
Birbilis
. (
2010
).
Effect of grain size on corrosion: A review
.
Corrosion
66
,
750051
7500513
.
25.
B.
Baufeld
,
E.
Brandl
, &
O.
van der Biest
. (
2011
).
Wire based additive layer manufacturing: Comparison of microstructure and mechanical properties of Ti– 6Al–4V components fabricated by laser-beam deposition and shaped metal deposition
.
Journal of Materials Processing Technology
211
,
1146
1158
.
This content is only available via PDF.
You do not currently have access to this content.