Self-assembled periodic nanostructure in bulk material can be successfully photoinduced by femtosecond laser pulses. Such nanograting structure inside material can be empirically classified into the following three types: (1) structural deficiency, (2) strained crystal structure, (3) partial phase separation. The formation mechanisms of the periodic nanostructure was interpreted in terms of the interaction between incident light field and the generated electron plasma. Furthermore, the fact that the periodic nanostructures could be formed empirically only if it is indirect bandgap semiconductor materials indicates the stress-dependence of bandgap structure and/or the recombination of the excited electrons are also involved to the nanostructure formation. In the case of indirect bandgap semiconductor crystal such as Si, GaP, β−Ga2O3, the electronic stress induced by the deformation potential of electronic states is considered to be one of important key for nanostructure formation. While, we have recently observed that the partial phase separation in nanoscale also occurred in Al2O3−Dy2O3 binary glass with a low glass formation ability. In this case, we assumed that the crystallization were periodically photoinduced in the subwavelength nanoplanes based on the periodic modulation of the photoinduced electron plasma density. Particularly, we have also observed that the garnet (Dy3Al5O12) and the perovskite phase (DyAlO3) can be selectively precipitated according to the laser condition. Based on the intriguing phenomena ranging from optical, electric, thermal, to magnetic properties caused by the nanograting structure, we demonstrate new possibilities for functionalization of material ranging from an eternal 5D optical storage, a polarization imaging, to a thermoelectric conversion.

1.
Shimotsuma
,
Y.
,
Kazansky
,
P. G.
,
Qiu
,
J.
&
Hirao
,
K.
(
2003
)
Self-organized nanogratings in glass irradiated by ultrashort light pulses
,
Phys. Rev. Lett.
91
,
247405
.
2.
Bhardwaj
,
V. R.
,
Simova
,
E.
,
Rajeev
,
P. P.
,
Hnatovsky
,
C.
,
Taylor
,
R. S.
,
Rayner
,
D. M.
&
Corkum
,
P. B.
(
2006
)
Opticaly produced arrays of planar nanostructures inside fused silica
,
Phys. Rev. Lett.
96
,
057404
.
3.
Kazansky
,
P. G.
,
Inouye
,
H.
,
Mitsuyu
,
T.
,
Miura
,
K.
,
Qiu
,
J.
,
Hirao
,
K.
&
Starrost
,
F.
(
1999
)
Anomalous anisotropic light scattering in Ge-doped silica glass
,
Phys. Rev. Lett.
,
82
,
2199
2202
.
4.
Sudrie
,
L.
,
Franco
,
M.
,
Prade
,
B.
&
Mysyrowicz
,
A.
(
2001
)
Study of damage in fused silica induced by ultra-short IR laser pulses
,
Opt. Commun.
,
191
,
333
339
.
5.
Shimotsuma
,
Y.
,
Hirao
,
K.
,
Qiu
,
J.
&
Kazansky
,
P. G.
(
2005
)
Nano-modification inside transparent materials by femtosecond laser single beam
,
Mod. Phys. Lett. B
19
,
225
238
.
6.
Mori
,
M.
,
Shimotsuma
,
Y.
,
Sei
,
T.
,
Sakakura
,
M.
,
Miura
,
K.
&
Udono
,
H.
(
2015
)
Tailoring thermoelectric properties of nanostructured crystal silicon fabricated by infrared femtosecond laser direct writing
,
Phys. Stat. Sol. (A)
,
212
,
715
721
.
7.
Shimotsuma
,
Y.
,
Sei
,
T.
,
Mori
,
M.
,
Sakakura
,
M.
&
Miura
,
K.
(
2016
)
Self-organization of polarization-dependent periodic nanostructures embedded in III-V semiconductor materials
,
Appl. Phys. A
,
122
,
159
.
8.
Kim
,
E.
,
Shimotsuma
,
Y.
,
Sakakura
,
M.
&
Miura
,
K.
(
2017
)
4H-SiC wafer slicing by using femtosecond laser double-pulses
,
Opt. Mater. Express
7
,
2734
2736
.
9.
Roberts
,
M. M.
,
Klein
,
L. J.
,
Savage
,
D. E.
,
Slinker
,
K. A.
,
Friesen
,
M.
,
Celler
,
G.
,
Eriksson
,
M. A.
&
Lagally
,
M. G.
(
2006
)
Elastically relaxed free-standing strained-silicon nanomembranes
,
Nat. Mater.
5
,
388
393
.
10.
Li
,
X.
,
Maute
,
K.
,
Dunn
,
M. L.
and
Yang
,
R.
(
2010
)
Strain effects on the thermal conductivity of nanostructures
,
Phys. Rev. B
81
,
245318
.
11.
Shimotsuma
,
Y.
,
Mori
,
S.
,
Nakanishii
,
Y.
,
Kim
,
E.
,
Sakakura
,
M.
&
Miura
,
K.
(
2018
)
Self-assembled glass/crystal periodic nanostructure in Al2O3− Dy2O3 binary glass
,
Appl. Phys. A
124
,
82
.
12.
Shimotsuma
,
Y.
,
Sakakura
,
M.
,
Kazansky
,
P. G.
,
Beresna
,
M.
,
Qiu
,
J.
,
Miura
,
K.
&
Hirao
,
K.
(
2010
)
Ultrafast manipulation of self-assembled form birefringence in glass
,
Adv. Mater.
22
,
4039
4043
.
13.
Ma
,
J. L.
,
Fu
,
Z. F.
,
Wei
,
Q.
&
Zhang
,
H. M.
(
2013
)
Uniaxial stress induced electron mobility enhancement in silicon
,
Silicon
5
,
219
224
.
14.
Pronko
,
P. P.
,
VanRompay
,
P. A.
,
Horvath
,
C.
,
Loesel
,
F.
,
Juhasz
,
T.
,
Liu
,
X.
&
Mourou
,
G.
(
1998
)
Avalanche ionization and dielectric breakdown in silicon with ultrafast laser pulses
,
Phys. Rev. B
58
,
2387
2390
.
15.
Lancry
,
M.
,
Groothoff
,
N.
,
Poumellec
,
B.
,
Guizard
,
S.
,
Fedorov
,
N.
&
Canning
,
J.
(
2011
)
Time- resolved plasma measurements in Ge-doped silica exposed to infrared femtosecond laser
,
Phys. Rev. B
84
,
245103
.
16.
Kononenko
,
V. V.
,
Konov
,
V. V.
&
Dianov
,
E. M.
(
2012
)
Delocalization of femtosecond radiation in silicon
,
Opt. Lett.
37
,
3369
3371
.
17.
Wright
,
O. B.
&
Gusev
,
V. E.
(
1995
)
Acoustic generation in crystalline silicon with femtosecond optical pulses
,
Appl. Phys. Lett.
66
,
1190
1192
.
18.
Hayashi
,
Y.
,
Tanaka
,
Y.
,
Kirimura
,
T.
,
Tsukuda
,
N.
,
Kuramoto
,
E.
&
Ishikawa
,
T.
(
2006
)
Acoustic pulse echoes probed with time-resolved X-ray triple-crystal diffractometry
,
Phys. Rev. Lett.
96
,
115505
.
19.
Wei
,
S. -H.
&
Zunger
,
A.
(
1999
)
Predicted band- gap pressure coefficients of all diamond and zinc- blende semiconductors: Chemical trends
,
Phys. Rev. B
60
,
5404
5411
.
20.
Mori
,
S.
,
Kurita
,
T.
,
Shimotsuma
,
Y.
,
Sakakura
,
M.
&
Miura
,
K.
(
2016
)
Nanogratings embedded in Al2O3−Dy2O3 glass by femtosecond laser irradiation
,
J. Laser Micro. Nanoen.
11
,
87
90
.
21.
Stubican
,
V.S.
&
Schultz
,
A. H.
(
1968
)
Spinodal Decomposition in the System TiO2−SnO2
,
J. Am. Ceram. Soc.
51
,
290
291
.
22.
Kumar
,
M. V.
,
Ishikawa
,
T.
,
Basavalingu
,
B.
,
Okada
,
J. T.
,
Watanabe
,
Y.
(
2013
)
Thermal and optical properties of glass and crystalline phases formed in the binary R2O3−Al2O3 (R = La-Lu and Y) system
,
J. Appl. Phys.
113
,
193503
.
This content is only available via PDF.
You do not currently have access to this content.