Diamond is a wide band gap material, which exhibits an abrupt increase of its free-electron density, when excited by an ultrashort laser pulse. The generation of free electrons transforms the insulator diamond to a conducting material with metallic optical behavior. This transformation process can be described by the multiple rate equation (MRE) model. The introduced MRE model considers strong-field excitation in the Keldysh picture as well as collisional excitation. The light attenuation results from the strong-field absorption and free-carrier absorption described in the Drude picture. Thus, the electron density and intensity distribution as function of time, penetration depth and laser beam radius is calculated. Furthermore, the model predicts the evolution of optical properties and estimates the ablation threshold value by the diameter and depth regression method.

The calculated ablation threshold is compared to experimental results on single crystalline chemical vapor deposited diamond by applying the diameter and depth regression method. Experimental and theoretical results are discussed with regard to pulse duration. The discussion focuses on single pulse ablation but also addresses the multi-shot domain, which is essential for laser machining. At 1030 nm, the experimental single pulse ablation threshold fluence is determined to be 8.2 J/cm2 and 12.9 J/cm2 for pulse durations of 400 fs and 700 fs respectively. This is in compliance with the simulation results.

1.
Jeschke
,
H. O.
,
Garcia
,
M. E.
,
2002
,
Theoretical description of the ultrafast ablation of diamond and graphite: Dependence of thresholds on pulse duration
,
Applied Surface Science
,
197–198
:
107–113
, DOI:.
2.
Shirk
,
M. D.
,
Molian
,
P. A.
,
Malshe
,
A. P.
,
1998
,
Ultrashort pulsed laser ablation of diamond
,
Journal of Laser Applications
,
10
/
2
:
64
, DOI:.
3.
Shirk
,
M. D.
,
1999
,
Ablation of Diamond and Graphite With Experimental Verification
,
Retrospective Theses and Dissertations
,
12483
.
4.
Li
,
Z.
,
Wang
,
J.
,
Wu
,
Q.
,
2012
,
Molecular dynamics simulation of the ablation process in ultrashort pulsed laser machining of polycrystalline diamond
,
500
:
351
356
, DOI: .
5.
Wang
,
C.
,
Jiang
,
L.
,
Wang
,
F.
,
Li
,
X.
,
Yuan
,
Y.
, et al,
2012
,
First-principles electron dynamics control simulation of diamond under femtosecond laser pulse train irradiation
,
Journal of Physics: Condensed Matter
,
24
/
27
:
275801
.
6.
Rethfeld
,
B.
,
2004
,
Unified model for the free-electron avalanche in laser-irradiated dielectrics
,
Physical Review Letters
,
92
/
18
:
187401
1
, DOI:.
7.
Christensen
,
B. H.
,
Balling
,
P.
,
2009
,
Modeling ultrashort-pulse laser ablation of dielectric materials
,
Physical Review B - Condensed Matter and Materials Physics
,
79
/
15
:
1
10
, DOI:.
8.
Waedegaard
,
K.
,
Sandkamm
,
D. B.
,
Haahr-Lillevang
,
L.
,
Bay
,
K. G.
,
Balling
,
P.
,
2014
,
Modeling short-pulse laser excitation of dielectric materials
,
Applied Physics A: Materials Science and Processing
,
117
/
1
:
7
12
, DOI:.
9.
Komlenok
,
M. S.
,
Kononenko
,
V. V.
,
Ralchenko
,
V. G.
,
Pimenov
,
S. M.
,
Konov
,
V. I.
,
2011
,
Laser Induced Nanoablation of Diamond Materials
,
Physics Procedia
,
12
:
37
45
, DOI:.
10.
Preuss
,
S.
,
Stuke
,
M.
,
1995
,
Subpicosecond ultraviolet laser ablation of diamond: Nonlinear properties at 248 nm and time-resolved characterization of ablation dynamics
,
Applied Physics Letters
,
67
/
1995
:
338
, DOI:.
11.
Reitze
,
D. H.
,
Ahn
,
H.
,
Downer
,
M. C.
,
1992
,
Optical properties of liquid carbon measured by femtosecond spectroscopy
,
Phys. Rev. B
,
45
/
6
:
2677
2693
, DOI:.
12.
Hsu
,
E. M.
,
Mailman
,
N. A.
,
Botton
,
G. A.
,
Haugen
,
H. K.
,
2011
,
Microscopic investigation of single-crystal diamond following ultrafast laser irradiation
,
Applied Physics A
,
103
/
1
:
185
192
, DOI:.
13.
Keldysh
,
L. V.
,
1965
,
Ionization in the Field of a Strong Electromagnetic Wave
,
Sov. Phys. JETP
,
20
/
5
:
1307
1314
.
14.
Gruzdev
,
V. E.
,
2007
,
Photoionization rate in wide band-gap crystals
,
Physical Review B - Condensed Matter and Materials Physics
,
75
/
20
:
1
13
, DOI:.
15.
Watanabe
,
T.
,
Teraji
,
T.
,
Ito
,
T.
,
Kamakura
,
Y.
,
Taniguchi
,
K.
,
2004
,
tMonte Carlo simulations of electron transport properties of diamond in high electric fields using full band structure
,
Journal of Applied Physics
,
95
/
9
:
4866
4874
, DOI:.
16.
Balling
,
P.
,
Schou
,
J.
,
Femtosecond-laser ablation dynamics of dielectrics : basics and applications for
,
036502
, DOI:.
17.
Jee
,
Y.
,
Becker
,
M. F.
,
Walser
,
R. M.
,
1988
,
Laser-induced damage on single-crystal metal surfaces
,
Journal of the Optical Society of America B
,
5
/
3
:
648
, DOI:.
18.
Mingareev
,
I.
,
2009
,
Ultrafast dynamicsof melting and ablationat large laser intensities
,
RWTH Aachen.
19.
Hajri
,
M.
,
Börner
,
P.
,
Wegener
,
K.
,
2018
,
An industry-relevant method to determine material-specific parameters for ultra-short pulsed laser ablation of cemented carbide
, in
10th Conference on Photonic Technologies
.
20.
Nolte
,
S.
,
Momma
,
C.
,
Jacobs
,
H.
,
Tu
,
A.
,
Chichkov
,
B. N.
, et al,
1997
,
Ablation of metals by ultrashort laser pulses
,
Journal of the Optical Society of America B
,
14
/
10
:
2716
2722
, DOI:.
21.
Mirza
,
I.
,
Bulgakova
,
N. M.
,
Tomáštík
,
J.
,
Michálek
,
V.
,
2016
,
Ultrashort pulse laser ablation of dielectrics : Thresholds, mechanisms, role of breakdown
,
Nature Publishing Group
,
6
/
39133
:
1
11
, DOI:.
22.
Neuenschwander
,
B.
,
Bucher
,
G. F.
,
Nussbaum
,
C.
,
Joss
,
B.
,
Muralt
,
M.
, et al,
2010
,
Processing of metals and dielectric materials with ps-laserpulses: results, strategies, limitations and needs
, in
Laser Applications in Microelectronic and Optoelectronic Manufacturing
, p. various-various pagings.
This content is only available via PDF.
You do not currently have access to this content.