In the last years commercially available ultrashort pulsed (usp) laser systems have reached average powers of several 100 W which makes them also interesting for enhancing traditional applications. For example, laser drilling, a conventionally melt dominated process, would benefit from the advantages of an usp ablation process. Due to the small processing area in laser drilling, substantial heat accumulates already at a few Watt of average power. This heat accumulation creates melt but also increases the mean ablation rate at least one order of magnitude and could lead to a productive drilling process. In this study the increase of the mean ablation rate in percussion drilling due to heat accumulation is examined for various metals and sample thicknesses for high average powers of up to 300 W and a pulse energy in the mJ-range. Those investigations have not yet been performed in such detail. It is shown that by doubling the pulse energy the drilling time can be decreased by two orders of magnitude due to heat accumulation. This behavior is valid for various metals like steel or aluminum, despite their varying material parameters. By analyzing the influence of different repetition rates and focal diameters, it is shown that the predominant parameter to characterize the heat accumulation is the average power. No significant difference is observed if the average power starting from 20 W is set up by a high pulse energy or repetition rate. Stainless steel has a different behavior compared to the other investigated metals when the pulse durations from 2 ps to 20 ps is changed which is caused by a modified plasma generation. For stainless steel the drilling time is found to be describable with one empirical formula for the entire range of examined average power and sample thickness.

1.
Momma
,
C.
,
Chichkov
,
B. N.
,
Nolte
,
S.
,
von Alvensleben
,
F.
,
Tünnermann
,
A.
,
Welling
,
H.
&
Wellegehausen
,
B.
(
1996
)
Short-pulse laser ablation of solid targets
,
Opt. Commun.
129
(
1-2
),
134
142
2.
Momma
,
C.
,
Nolte
,
S.
,
Chichkov
,
B.N.
,
von Alvensleben
,
F.
&
Tünnermann
,
A.
(
1997
)
Precise Micromachining with Femtosecond Laser Pulses
,
Laser und Optoelektronik
3
(
29
),
82
89
3.
Le Harzic
,
R.
,
Breitling
,
D.
,
Weikert
,
M.
,
Sommer
,
S.
,
Föhl
,
C.
,
Valette
,
S.
,
Donnet
,
C.
,
Audouard
,
E.
, &
Dausinger
,
F.
(
2005
)
Pulse width and energy influence on laser micromachining of metals in a range of 100 fs to 5 ps
,
Applied Surface Science
249
,
322
331
4.
Nedialkow
,
N.N
,
Imamova
,
S.E.
, &
Atanasov
,
P.A.
(
2004
)
Ablation of metals by ultrashort laser pulses
,
J. Phys. D: Appl. Phys.
37
,
638
643
5.
Minagareev
,
I.
(
2009
)
Ultrafast Dynamics of Melting and Ablation at Large Laser Intensities
, Dissertation,
RWTH Aachen
6.
Lopez
,
J.
,
Mincuzzi
,
G.
,
Devillard
,
R.
,
Zaouter
,
Y.
,
Hönninger
,
C.
,
Mottay
,
E.
&
Kling
,
R.
(
2015
)
Ablation Efficiency of high average power ultrafast laser
,
Journal of Laser Applications
27
,
S28008
.
7.
Jäggi
,
B.
,
Neuenschwander
,
B.
,
Schmid
,
M.
,
Muralt
,
M.
,
Zuercher
,
J.
&
Hunziker
,
U.
(
2011
)
Influence of the Pulse Duration in the ps-Regime on the Ablation Efficiency of Metals
,
Physics Procedia
12
,
164
171
8.
Ancona
,
A.
,
Döring
,
S.
,
Jauregui
,
C.
,
Röser
,
F.
,
Limpert
,
J.
,
Nolte
,
S.
&
Tünnermann
,
A.
(
2009
)
Femtosecond and picosecond laser drilling of metals at high repetition rates and average powers
,
Opt. Lett.
34
(
21
),
3304
3306
9.
Finger
,
J.
&
Reininghaus
,
M.
(
2014
)
Effect of pulse to pulse interactions on ultrashort pulse laser drilling of steel with repetition rates up to 10 MHz
,
Opt. Express
22
,
18790
18799
10.
Döring
,
S.
,
Ullsperger
,
T.
,
Heisler
,
F.
,
Richter
,
S.
,
Tünnermann
,
A.
&
Nolte
,
S.
(
2013
)
Hole formation process in ultrashort pulse laser percussion drilling
,
Physics Procedia
41
431
440
11.
Dausinger
,
F.
(
2003
)
Femtosecond technology for precision manufacturing: Fundamental and technical aspects
”,
RIKEN Review No.50
,
77
82
12.
Ancona
,
A.
,
Röser
,
F.
,
Rademaker
,
K.
,
Limpert
,
J.
,
Nolte
,
S.
&
Tünnermann
,
A.
(
2008
)
High speed laser drilling of metals using a high repetition rate, high average power ultrafast fiber CPA system
,
Opt. Express
16
(
12
),
8958
8968
13.
Finger
,
J.
,
Kalupka
,
C.
&
Reininghaus
,
M.
(
2015
)
High power ultra-short pulse laser ablation of IN718 using high repetition rates
,
Journal of Materials Processing Technology
226
221
227
14.
Kononenko
,
T.V.
,
Freitag
,
C.
,
Sovyk
,
D.N.
,
Lukhter
,
A.B.
,
Skvortsov
,
K.V.
&
Konov
,
V.I.
(
2018
)
Influence of pulse repetition rate on percussion drilling of Ti-based alloy by picosecond laser pulses
,
Optics and Lasers in Engineering
,
103
,
65
70
,
15.
Negel
,
J.
,
Loescher
,
A.
,
Bauer
,
D.
,
Sutter
,
D.
,
Killi
,
A.
,
Ahmed
,
M.A.
&
Graf
,
T.
(
2016
)
Second Generation Thin-Disk Multipass Amplifier Delivering Picosecond Pulses with 2 kW of Average Output Power, in Lasers Congress 2016 (ASSL, LSC, LAC
),
OSA Technical Digest (online), paper ATu4A.5.
16.
Rußbüldt
,
P.
,
Weitenberg
,
J.
,
Sartorius
,
T.
,
Rotarius
,
G.
,
Hoffmann
,
D.
&
Poprawe
,
R.
(
2012
)
Ytterbium Innoslab Amplifiers - The High Average Power Approach Of Ultrafast Lasers
,
1462
.
120
123
17.
Mans
,
T.
,
Graf
,
R.
,
Dolkemeyer
,
J.
&
Schnitzler
,
C.
(
2014
)
„Femtosecond Innoslab amplifier with 300W average power and pulse energies in the mJ-regime
,
Proceedings of SPIE.
8959
,
18.
Breitling
,
D.
(
2009
)
Gasphaseneinflüsse beim Abtragen und Bohren mit ultrakurz gepulster Laserstrahlung
, Dissertation,
Stuttgart, Univ.
19.
Finger
,
J.
(
2017
)
Puls-zu-Puls-Wechselwirkungen beim Ultrakurzpuls-Laserabtrag mit hohen Repetitionsraten
, Dissertation,
RWTH Aachen
20.
Vorobyev
,
A.Y.
,
Kuzmichev
,
V.M.
,
Kokody
,
N.G.
,
Kohns
,
P.
,
Dai
,
J.
,
Guo
C.
(
2006
)
Residual thermal effects in Al following single ns- and fs-laser pulse ablation
,
Appl. Phys. A
82
,
357
362
21.
Förster
,
D.J.
,
Weber
,
R.
,
Holder
,
D.
&
Graf
,
T.
(
2018
)
Estimation of the depth limit for percussion drilling with picosecond laser pulses
,
Opt. Express
26
(
9
),
11546
11552
22.
Weber
,
R.
,
Graf
,
T.
,
Berger
,
P.
,
Onuseit
,
V.
,
Wiedenmann
,
M.
,
Freitag
,
C.
&
Feuer
,
A.
(
2014
)
Heat accumulation during pulsed laser materials processing
,
Opt. Express
22
(
9
),
11312
11324
23.
Kamlage
,
G.
,
Bauer
,
T.
,
Ostendorf
,
A.
&
Chichkov
,
B.N.
(
2003
)
Deep drilling of metals by femtosecond laser pulses
,
Appl. Phys. A
77
,
307
310
24.
Michalowski
,
A.
(
2014
)
Untersuchungen zur Mikrobearbeitung von Stahl mit ultrakurzen Laserpulsen
, Dissertation, Stuttgart,
Univ.
25.
Cardarelli
,
F.
(
2008
)
Materials handbook: A concise desktop reference
, 2. Ed.
London
,
Springer
26.
Kononenko
,
T.V.
,
Klimentov
,
S.M.
,
Konov
,
V.I.
,
Pivovarov
,
P.A.
,
Garnov
,
S.V.
,
Dausinger
,
F.
&
Breitling
,
D.
(
2001
)
Propagation of short-pulsed laser radiation and stages of ablative deep channel formation
,
Proceedings of SPIE
Vol.
4274
,
248
257
27.
van Kampen
,
M.
,
Kohlhepp
,
J.T.
,
de Jonge
,
W.J.M.
,
Koopmans
,
B.
&
Coehoorn
,
R.
(
2005
)
Sub-picosecond electron and phonon dynamics in nickel
,
J. Phys.: Condens. Matter
17
,
6823
6834
28.
Hüttner
,
B.
&
Rohr
,
G.
(
1996
)
On the theory of ps and sub-ps laser pulse interaction with metals I. Surface temperature
,
Appl. Surface Science
103
,
269
274
This content is only available via PDF.
You do not currently have access to this content.