For most applications the benefit of the burst mode can performed. It was found that for surface structuring with a Gaussian beam the specific removal rate in terms of removed volume per pulse energy or removed volume per time average power reads easily be explained: The energy of each pulse in a n-pulse burst is n times smaller compared to single pulses with identical average power repetition rate. Thus, the peak fluence of each pulse is nearer the optimum value the removal rate is therefore increased. But it is generally not as high as it would be if single pulses with identical peak fluence but n-times higher repetition rate could be applied.

But there are situations where the burst mode can lead to higher efficiencies i.e. specific removal rates and a real increase in the removal rate can be obtained. For copper, 1064 nm and a 3-pulse burst the specific removal rate amounts to about 118% of a single pulse. For silicon a huge increase from 1.62 µm3/µJ to 4.92 µm3/µJ was observed by applying an 8-pulse burst. Based on calorimetric measurements on copper and silicon the increased absorptance resulting from a rougher surface is identified as an effect which could be responsible for this increase of the specific removal rate. Thus, the burst mode is expected to be able to influence surface parameters in a way that higher efficiencies of the ablation process can be realized.

1.
B. N.
Chichkov
,
C.
Momma
,
S.
Nolte
,
F.
von Alvensleben
and
A.
Tünnermann
,
Appl. Phys. A
63
, (
1996
)
109
2.
D.
Breitling
,
A.
Ruf
and
F.
Dausinger
,
Proc. of SPIE
5339
,
49
63
(
2004
)
3.
F.
Dausinger
,
H.
Hügel
and
V.
Konov
,
Proc. Of SPIE
Vol.
5147
,
106
115
(
2003
)
4.
J.
Meijer
,
K.
Du
,
A.
Gillner
,
D.
Hoffmann
,
V. S.
Kovalenko
,
T.
Masuzawa
,
A.
Ostendorf
,
R.
Poprawe
,
W.
Schulz
,
Annals of the CIRP
,
51/2
(
2002
)
5.
G.
Raciukaitis
,
M.
Brikas
,
P.
Gecys
,
B.
Voisiat
,
M.
Gedvilas
,
JLMN journal of Laser Micro/Nano-engineering
4
,
186
(
2009
)
6.
B.
Neuenschwander
,
G.
Bucher
,
Ch.
Nussbaum
,
B.
Joss
,
M.
Muralt
,
U.
Hunziker
,
P.
Schuetz
,
Proc. of SPIE
7584
,
75840R
(
2010
)
7.
B.
Jaeggi
,
B.
Neuenschwander
,
M.
Schmid
,
M.
Muralt
,
J.
Zuercher
,
U.
Hunziker
,
Physics Procedia
12B
,
164
171
(
2011
)
8.
J.
Lopez
,
A.
Lidolff
,
M.
Delaigue
,
C.
Hönninger
,
S.
Ricaud
,
E.
Mottay
,
Proc. of ICALEO M401
(
2011
)
9.
B.
Neuenschwander
,
B.
Jaeggi
,
M.
Schmid
,
Proc. of ICALEO M1004
(
2012
)
10.
B.
Neuenschwander
,
B.
Jaeggi
,
M.
Zimmermann
,
V.
Markovic
,
B.
Resan
,
K.
Weingarten
,
R.
de Loor
,
L.
Penning
,
J. of. Laser Applications
, Vol.
28
,
022506
(
2016
)
11.
F.
Bauer
,
A.
Michalowski
,
Th.
Kiedrowski
,
S.
Nolte
,
Opt. Expr.
23
,
1035
(
2015
)
12.
B.
Jaeggi
, S Remund,
R.
Streubel
,
B.
Goekce
,
S.
Barcikowski
,
B.
Neuenschwander
,
JLMN Journal of Laser Mico/Nanoengineering
12
,
267
273
(
2017
)
13.
R.
Knappe
,
H.
Haloui
,
A.
Seifert
,
A.
Weis
,
A.
Nebel
,
Proc. of SPIE
,
7585
, (
2010
)
14.
Th.
Kramer
,
Y.
Zhang
,
S.
Remund
,
B.
Jaeggi
,
A.
Michalowski
,
L.
Grad
,
B.
Neuenschwander
,
JLMN Journal of Laser Mico/Nanoengineering
12
,
107
114
(
2017
)
15.
B.
Jaeggi
,
S.
Remund
,
Y.
Zhang
,
Th.
Kramer
,
B.
Neuenschwander
,
J. Laser Micro/Nanoengineering
12
, (
2017
)
258
.
16.
B.
Jaeggi
,
L.
Cangueiro
,
D.
Bruneel
,
J.A. Ramos
de Campos
,
C.
Hairaye
,
B.
Neuenschwander
,
Proc. Of SPIE 10519
,
1051905
(
2018
)
17.
F.
Bauer
, “Grundlegende Untersuchungen zum Abtragen von Stahl mut ultraurzen Laserpulsen”, PhD-Thesis,
Friedrich-Schiller-Universitaet Jena, Physikalisch-Atronomische Fakzultät
(
2018
)
18.
D. J.
Foerster
,
S.
Faas
,
S.
Gröninger
,
F.
Bauer
,
A.
Michalowski
,
T.
Graf
,
Appl. Surf. Sci.
440
,
926
(
2018
)
19.
M.E.
Povarnitsyn
,
T.E.
Itina
,
K.V.
Khishchenko
,
P.T.
Levashov
,
Phys. Rev. Let.
103
,
195002
(
2009
)
20.
C.
Kerse
,
HJ.
Kalaycioglu
,
P.
Elahi
,
B.
Cetin
,
D. K.
Kesimn
,
Ö.
Akcaalan
,
S.
Yavas
,
M. D.
Asik
,
B.
Öktem
,
H.
Hoogland
,
R.
Holzwarth
,
F. Ömer
Ilday
:
Nature
537
,
84
(
2016
).
21.
B.
Jaeggi
,
B.
Neuenschwander
,
U.
Hunziker
,
J.
Zuercher
,
T.
Meier
,
M.
Zimmermann
,
K. H.
Selbmann
,
G.
Hennig
:
Proc. of SPIE
8243
,
82430K
(
2012
).
22.
M.
Zimmermann
,
B.
Jaeggi
,
B.
Neuenschwander
:
Proc. of SPIE
9350
,
935016
(
2015
).
23.
B.
Neuenschwander
,
T.
Kramer
,
B.
Lauer
,
B.
Jaeggi
:
Proc. of SPIE
9350
,
93500U
(
2015
)
24.
F.
Bauer
,
A.
Michalowski
,
Th.
Kiedrowski
,
S.
Nolte
,
Opt. Expr.
23
,
1035
(
2015
)
25.
refractivindex.info
26.
B.
Jaeggi
,
D. J.
Foerster
,
R.
Weber
,
B.
Neuenschwander
,
Adv. Opt. Techn.
7
,
175
(
2018
)
27.
Y.
Ren
,
J.K.
Chen
,
Y.
Zhang
,
J. of. Appl. Phys
,
110
, (
2011
)
113102
28.
S.Y.
Wang
,
Y.
Ren
,
C.W.
Cheng
,
J.K.
Chen
,
D.Y.
Tzou
,
Appl. Surf. Sci.
,
265
,
302
308
(
2013
)
This content is only available via PDF.
You do not currently have access to this content.